COS318 Project 3
Preemptive Scheduling



Project Overview

* 3 targets:

— Preemptive scheduling: respond to the timer
interrupt

— Blocking sleep: take the sleeping tasks out of the
ready queue, put them back after a while

— Synchronization primitives: implement condition
variables, semaphores and barriers

* Your code is based on our provided kernel
e 5 test sets are provided



Preemptive Scheduling

Tasks are preempted through timer interrupt,
which is handled by irq0

Switch context as what you have done in
project 2

Turn on/off the interrupt properly
— Safety: prevent race conditions in kernel
— Liveness: interrupts should be mostly on

Test sets you can use: test_regs, test_preempt



Blocking sleep

Maintain your own “wait queue”
Use “num_ticks” to do the timing
Wake up the sleeping task as soon as possible

Carefully handle the case that all tasks are
sleeping

Test set you can use: test_blocksleep



Synchronization Primitives

The names of all the primitives are provided
An implementation of locks is also available

You need to design the data structures and
implement the behaviors

Turn on/off the interrupt properly
Be careful with the fairness issue

Test sets you can use: test_barrier, tsk_test
(this tests everything)




Extra Credit 1

* Prioritized Task Scheduling
— Lottery Scheduling is OK

— But any other algorithms are welcome, as long as
you describe clearly

— Modify the priorities in “test_preempt” set to test
your scheduling algorithm

— Add “#define EC_PRIORITIES” in “common.h”



Extra Credit 2

e Automatic Deadlock Detection

— Look for cycles in a lock graph
* simple theory, difficult implementation

— Only relevant to locks

 (a restricted use of locks at that — locks released by
same process that acquired)

— Detect sensitively and correctly
— Recover from the deadlock properly

— Design your own test cases
— Add “#define EC_DEADLOCK” to “common.h”



Immﬁ

Questions you might want to conside

before coding
When do you need to enter the critical
region?

What would you do if no tasks in the ready
gueue but some tasks in the sleep queue?

How to wakeup “ready to be woke up” tasks?

How to guarantee the fairness of
synchronization primitives?



Files you might need to modify
(but not limited to)

common.h : add #define if you touch the extra
credits

entry.S: preemptive context switch
kernel.c: some more initialization
queue.c/h: for extra credit
scheduler.c/h: preemptive scheduling
sync.c/h: synchronization primitives



Design Review

* irg0_entry: response to the timer interrupt
* Blocking sleep: queue, sleep and wakeup
* Synchronization primitives

— Data structure

— Workflow

— Fairness



Timeline

* Design review = Monday with Yida (not me!)
* Project due: 11:59pm 4 November 2012

— Codes with necessary comments

— Readme
e Less than 500 words

» Specify what you have done, especially if you touch the
extra credits

 Q/A sessions
— 7:30-8:30pm 10/23



