
COS318 Project 1
Bootloader

1

Project Overview

• Bootloader: bootblock.s
– Understand how the PC boots

– BIOS, X86 assembly language (tutorial on Thu)

• Create an image for booting: createimage.c
– Understand ELF format

– Read files in ELF format and extract the necessary
information

• Test: Bochs first, then boot off a USB disk

• Extra credit: loading larger kernels

2

Bootloader

• There’s nothing in the
memory once turning on
the machine
– Resort to the hardware

• The BIOS is loaded
– Typically doesn’t know

anything about the OS

– Minimal functionality

• Everything starts from
here

3

Bootloader

• The BIOS starts at
0xFFFF0

– Self check, initialization,
search for boot devices

– Load the first sector (512
bytes) of a boot device
to 0x7C00

– Jump to 0x7C00

4

Bootloader

• Load the kernel
• Set up kernel stack
• Jump to the kernel

5

Bootloader

Kernel

 Disk

 Memory

Read from Disk to Memory

• BIOS Interrupt 0x13, function 2: Disk - Read
sector(s) into memory
– %ah=0x02, function 2
– %al=#sectors to read (must be nonzero)
– %ch+bits 6 7 of %cl=cylinder number
– %cl=sector number (bits 0-5)
– %dh=head number
– %dl=drive number (has been set on entering)
– %es:%bx->data buffer
– int $0x13

• Details will be covered in the tutorial on Thursday

6

Createimage

• After compiling and linking

7

• What we want

Bootloader

Kernel

Createimage

• Study the ELF format
– ELF header: Elf32_Ehdr
– Program header: Elf32_Phdr

• Padding up to a complete sector (512 bytes)
• Mark the image to be bootable

– Write 0x55 0xAA to the end of the first sector

• Compare your implementation to the given
createimage.given
– Implement --extend to print information
– Ignore --vm

8

Test

• Use Bochs to do the simulation

– Installed in the fishbowl machines

– bochs: run

– /u/318/bin/bochsdbg: debug

• USB boot off

– On the fishbowl machines: cat image > /dev/sdf

– Boot from a USB disk on the fishbowl machines

9

Extra Credit

• Load larger kernels

– Relocate the bootloader

– Read data from more than one head/cylinder

• Get the device parameters: #max head, #max sector

– Deal with the cross physical segment reading

• Data are read to %es:%bx

• Read the kernel sector by sector from the disk

10

Get Drive Parameters

• BIOS Interrupt 0x13, function 8: Disk – Get drive
parameters
– %ah=0x08, function 8

– %dl=drive number

– int $0x13, then if successful you will get:

– %ch+(bits 6 7 of %cl)=maximum cylinder number,

– %cl=maximum sector number (bits 0-5), 1-based

– %dh=maximum head number, 0-based

11

0-based

Design Review

• Monday, 9/24 from 10:30am to 10:30pm,
signup online

• Answer questions listed in the project
description briefly. No more than 10 mins!

12

Print characters and strings

• Code based on the given bootblock.s

• Refer to bootblock_example.s

• Use BIOS Interrupt 0x10 function 14

– %ah=0x0E, function 14

– %al=character to be printed

– %bh=active page number (use 0x00)

– %bl=foreground color (use 0x02)

– int $0x10

13

Something else…

• Tutorial of assembly language and bochs
debugging will be on Thursday, 9/20

• Use Piazza to ask question (except personal or
private issues), I will be generally monitoring
through the whole project

• We are working on an OS image that can be
used via VirtualBox, so as to relieve the
workload of fishbowl machines

14

