
COS 318: Operating Systems

Non-Preemptive and
 Preemptive Threads

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

  Non-preemptive threads
  Preemptive threads
  Kernel vs. user threads
  Too much milk problem

3

Kernel scheduler

Revisit Monolithic OS Structure

  Kernel has its address space
shared with all processes

  Kernel consists of
  Boot loader
  BIOS
  Key drivers
  Threads
  Scheduler

  Scheduler
  Use a ready queue to hold all

ready threads
  Schedule in the same address

space (thread context switch)
  Schedule in a new address

space (process context switch)

User
Process

User
Process

4

Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

5

Scheduler

  A non-preemptive scheduler invoked by calling
  block()
  yield()

  The simplest form
 Scheduler:
 save current process/thread state

 choose next process/thread to run
 dispatch (load PCB/TCB and jump to it)

  Does this work?

6

More on Scheduler

 Should the scheduler use a special stack?

 Should the scheduler simply be a kernel thread?

7

Where and How to Save Thread Context?

  Save the context on the thread’s stack
  Many processors have a special instruction to do it efficiently
  But, need to deal with the overflow problem

  Check before saving
  Make sure that the stack has no overflow problem
  Copy it to the TCB residing in the kernel heap
  Not so efficient, but no overflow problems

frame
frame

frame
frame

frame
frame

frame
frame Thread 2

Thread 1

Save the context
of Thread 1 to
its stack Context

8

Preemption by I/O and Timer Interrupts

  Why
  Timer interrupt to help

CPU management
  Asynchronous I/O to

overlap with computation
  Interrupts

  Between instructions
  Within an instruction

except atomic ones
  Manipulate interrupts

  Disable (mask) interrupts
  Enable interrupts
  Non-Masking Interrupts

CPU

Memory Interrupt

9

State Transition for Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

10

State Transition for Preemptive Scheduling

Running

Blocked
Ready

Resource free, I/O completion interrupt
(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

11

Interrupt Handling for Preemptive Scheduling

  Timer interrupt handler:
  Save the current process / thread to its PCB / TCB
  … (What to do here?)
  Call scheduler

  Other interrupt handler:
  Save the current process / thread to its PCB / TCB
  Do the I/O job
  Call scheduler

  Issues
  Disable/enable interrupts
  Make sure that it works on multiprocessors

12

Dealing with Preemptive Scheduling

  Problem
  Interrupts can happen

anywhere
  An obvious approach

  Worry about interrupts and
preemptions all the time

  What we want
  Worry less all the time
  Low-level behavior

encapsulated in “primitives”
  Synchronization primitives

worry about preemption
  OS and applications use

synchronization primitives

Concurrent applications

OS services

Synchronization
primitives

Scheduling
and interrupt handling

13

Kernel scheduler

User Threads vs. Kernel Threads

  Context switch at user-level
without a system call (Java
threads)

  Is it possible to do preemptive
scheduling?

  What about I/O events?

  A user thread
  Makes a system call (e.g. I/O)
  Gets interrupted

  Context switch in the kernel

User
Process

User
Process

User
Process

Scheduler

14

Summary of User vs. Kernel Threads

  User-level threads
  User-level thread package implements thread context

switches using codes like co-routines
  Timer interrupt (signal facility) can introduce preemption
  When a user-level thread is blocked on an I/O event, the

whole process is blocked
  Kernel-threads

  Kernel-level threads are scheduled by a kernel scheduler
  A context switch of kernel-threads is more expensive than

user threads due to crossing protection boundaries
  Hybrid

  It is possible to have a hybrid scheduler, but it is complex

15

Interactions between User and Kernel Threads

  Two approaches
  Each user thread has its own kernel stack
  All threads of a process share the same kernel stack

Private kernel stack Shared kernel stack

Memory usage More Less

System services Concurrent access Serial access

Multiprocessor Yes Not within a process

Complexity More Less

16

“Too Much Milk” Problem

  Do not want to buy too much milk
  Any person can be distracted at any point

Student A Student B

15:00 Look at fridge: out of milk

15:05 Leave for Wawa

15:10 Arrive at Wawa Look at fridge: out of milk

15:15 Buy milk Leave for Wawa

15:20 Arrive home; put milk away Arrive at Wawa

15:25 Buy milk

Arrive home; put milk away
Oh No!

17

Using A Note?

 Any issue with this approach?

Thread B

if (noMilk) {
 if (noNote) {
 leave note;
 buy milk;
 remove note;
 }
}

Thread A

if (noMilk) {
 if (noNote) {
 leave note;
 buy milk;
 remove note;
 }
}

18

Another Possible Solution?

 Does this method work?

Thread A

leave noteA
if (noNoteB) {
 if (noMilk) {
 buy milk
 }
}
remove noteA

Thread B

leave noteB
if (noNoteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

Didn’t buy milk
Didn’t buy milk

19

Yet Another Possible Solution?

 Would this fix the problem?

Thread A

leave noteA
while (noteB)
 do nothing;
if (noMilk)
 buy milk;
remove noteA

Thread B

leave noteB
if (noNoteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

20

Remarks

  The last solution works, but
  Life is too complicated
  A’s code is different from B’s
  Busy waiting is a waste

  Peterson’s solution is also complex
  What we want is:

Acquire(lock);
if (noMilk)
 buy milk;
Release(lock);

Critical section

21

What Is A Good Solution

  Only one process/thread inside a critical section
  No assumption about CPU speeds
  A process/thread inside a critical section should not be

blocked by any process outside the critical section
  No one waits forever

  Works for multiprocessors
  Same code for all processes/threads

22

Summary

  Non-preemptive threads issues
  Scheduler
  Where to save contexts

  Preemptive threads
  Interrupts can happen any where!

  Kernel vs. user threads
  Main difference is which scheduler to use

  Too much milk problem
  What we want is mutual exclusion

