
COS 318: Operating Systems

Semaphores, Monitors and
Condition Variables

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

  Semaphores
  Monitors
  Mesa-style monitor and its idioms
  Barriers

3

Semaphores (Dijkstra, 1965)

  Initialization
  Initialize a semaphore s

  P (or Down or Wait or “Probeer”) definition
  Atomic operation
  Wait for semaphore to become positive and then decrement

P(s){
 while (s <= 0)
 ;
 s--;
}

  V (or Up or Signal or “Verhoog”) definition
  Atomic operation
  Increment semaphore by 1

V(s){
 s++;
}

Bounded Buffer with Semaphores

  Initialization: emptyCount = N; fullCount = 0
 Are P(mutex)and V(mutex) necessary?

producer() {
 while (1) {
 produce an item
 P(emptyCount);

 P(mutex);
 put the item in buffer
 V(mutex);

 V(fullCount);
 }
}

consumer() {
 while (1) {
 P(fullCount);

 P(mutex);
 take an item from buffer
 V(mutex);

 V(emptyCount);
 consume the item
 }
}

5

Example: Interrupt Handler

  A device thread works with an interrupt handler
  What to do with shared data?
  What if “m” is held by another thread or by itself?

Device thread

...
Acquire(m);

...

Release(m);
...

Interrupt handler

...
Acquire(m);

...

Release(m);
...

?

6

Interrupted Thread

…

Interrupt
…

Use Semaphore

Interrupt handler
...
V(s);
...

Device thread
while (1) {
 P(s);
 Acquire(m);
 ...
 deal with interrupt
 ...
 Release(m);
}

Init(s,0);

Semaphores Are Not Always Convenient

 What if we want Dequeue(q) to block until q is not
empty?
  It is a consumer and producer problem

 Semaphores are difficult to use
  Orders are important

Enqueue(q, item)
{
 Acquire(mutex);
 put item into q;
 Release(mutex);
}

Dequeue(q)
{
 Acquire(mutex);
 take an item from q;
 Release(mutex);
 return item;
}

 A shared queue has Enqueue and Dequeue:

Monitor: Hide Mutual Exclusion

 Brinch-Hansen (73), Hoare (74)
 Procedures are mutual exclusive

Shared
data

...

Queue of waiting processes
trying to enter the monitor

procedures

Condition Variables in A Monitor

 Wait(condition)
  Block on “condition”

 Signal(condition)
  Wakeup a blocked process

on “condition”
Shared

data

...
Entry queue

procedures

x
y

Queues
associated
with x, y
conditions

Producer-Consumer with Monitors

monitor ProdCons
 condition full, empty;

 procedure Enter;
 begin
 if (buffer is full)
 wait(full);
 put item into buffer;
 if (only one item)
 signal(empty);
 end;

 procedure Remove;
 begin
 if (buffer is empty)
 wait(empty);
 remove an item;
 if (buffer was full)
 signal(full);
 end;

procedure Producer
begin
 while true do
 begin
 produce an item
 ProdCons.Enter();
 end;
end;

procedure Consumer
begin
 while true do
 begin
 ProdCons.Remove();
 consume an item;
 end;
end;

Hoare’s Signal Implementation (MOS p137)

  Run the signaled thread
immediately and suspend
the current one (Hoare)

  What if the current thread
has more things to do?

 if (only one item)
 signal(empty);

 something else
end;

11

monitor ProdCons
 condition full, empty;

 procedure Enter;
 begin
 if (buffer is full)
 wait(full);
 put item into buffer;
 if (only one item)
 signal(empty);
 end;

 procedure Remove;
 begin
 if (buffer is empty)
 wait(empty);
 remove an item;
 if (buffer was full)
 signal(full);
 end;

Hansen’s Signal Implementation (MOS p 137)

  Signal must be the last
statement of a monitor
procedure

  Exit the monitor

  Any issue with this
approach?

12

monitor ProdCons
 condition full, empty;

 procedure Enter;
 begin
 if (buffer is full)
 wait(full);
 put item into buffer;
 if (only one item)
 signal(empty);
 end;

 procedure Remove;
 begin
 if (buffer is empty)
 wait(empty);
 remove an item;
 if (buffer was full)
 signal(full);
 end;

Mesa Signal Implementation

  Continues its execution
 if (only one item)

 signal(empty);
 something else
end;

  B. W. Lampson and D. D. Redell, “Experience with Processes and
Monitors in Mesa,” Communiction of the ACM, 23(2):105-117. 1980.

  This is easy to implement!

  Issues?

13

Mesa Style “Monitor” (Birrell’s Paper)

  Associate a condition variable with a mutex

  Wait(mutex, condition)
  Atomically unlock the mutex and enqueued on the condition

variable (block the thread)
  Re-lock the lock when it is awaken

  Signal(condition)
  No-op if there is no thread blocked on the condition variable
  Wake up at least one if there are threads blocked

  Broadcast(condition)
  Wake up all waiting threads

15

Consumer-Producer with Mesa-Style Monitor

static count = 0;
static Cond full, empty;
static Mutex lock;

Enter(Item item) {
 Acquire(lock);
 if (count==N)
 Wait(lock, full);
 insert item into buffer
 count++;
 if (count==1)
 Signal(empty);
 Release(lock);
}

Remove(Item item) {
 Acquire(lock);
 if (!count)
 Wait(lock, empty);
 remove item from buffer
 count--;
 if (count==N-1)
 Signal(full);
 Release(lock);
}

Any issues with this?

16

Consumer-Producer with Mesa-Style Monitor

static count = 0;
static Cond full, empty;
static Mutex lock;

Enter(Item item) {
 Acquire(lock);
 while (count==N)
 Wait(lock, full);
 insert item into buffer
 count++;
 if (count==1)
 Signal(empty);
 Release(lock);
}

Remove(Item item) {
 Acquire(lock);
 while (!count)
 Wait(lock, empty);
 remove item from buffer
 count--;
 if (count==N-1)
 Signal(full);
 Release(lock);
}

17

The Programming Idiom

  Waiting for a resource

Acquire(mutex);
while (no resource)
 wait(mutex, cond);

...

(use the resource)
...
Release(mutex);

  Make a resource available

Acquire(mutex);
...

(make resource available)
...

Signal(cond);
/* or Broadcast(cond);
Release(mutex);

Revisit the Motivation Example

 Does this work?

Enqueue(Queue q,
 Item item) {

 Acquire(lock);

 insert an item to q;

 Signal(Empty);
 Release(lock);
}

Item GetItem(Queue q) {
 Item item;

 Acquire(lock);
 while (q is empty)
 Wait(lock, Empty);

 remove an item;

 Release(lock);
 return item;
}

19

Condition Variables Primitives

 Wait(mutex, cond)
  Enter the critical section

(min busy wait)
  Release mutex
  Put my TCB to cond’s

queue
  Call scheduler
  Exit the critical section

 . . . (blocked)

  Waking up:
•  Acquire mutex
•  Resume

  Signal(cond)
  Enter the critical section

(min busy wait)
  Wake up a TCB in cond’s

queue
  Exit the critical section

More on Mesa-Style Monitor

  Signaler continues execution
  Waiters simply put on ready queue

  Must reevaluate the condition
  No constraints on when the waiting thread must run
  No constrains on signaler

  Can execute after signal call (Hansen’s cannot)
  Do not need to relinquish control to awaken thread/process

Evolution of Monitors
  Brinch-Hansen (73) and Hoare Monitor (74)

  Concept, but no implementation
  Requires Signal to be the last statement (Hansen)
  Requires relinquishing CPU to signaler (Hoare)

  Mesa Language (77)
  Monitor in language, but signaler keeps mutex and CPU
  Waiter simply put on ready queue, with no special priority

  Modula-2+ (84) and Modula-3 (88)
  Explicit LOCK primitive
  Mesa-style monitor

  Pthreads (95)
  Started standard effort around 1989
  Defined by ANSI/IEEE POSIX 1003.1 Runtime library

  Java threads
  James Gosling in early 1990s without threads
  Use most of the Pthreads primitives

22

Example: A Simple Barrier

  Thread A and Thread B
want to meet at a
particular point

  Then both go forward

  How would you program
this with a monitor?

Thread A Thread B

23

Using Semaphores as A Barrier

  Use two semaphore?
 init(s1, 0);
init(s2, 0);

  What about more than two threads?

Thread A
…

V(s1);
P(s2);

…

Thread B
…

V(s2);
P(s1);

…

24

Barrier Primitive

  Functions
  Take a barrier variable
  Broadcast to n-1 threads
  When barrier variable has

reached n, go forward

  Hardware support on
some parallel machines
  Multicast network
  Counting logic
  User-level barrier variables

Thread 1
…

Barrier(b);
…

Thread n
…

Barrier(b);
…

. . .

Barrier
variable

25

Equivalence

 Semaphores
  Good for signaling
  Not good for mutex because it is easy to introduce a bug

 Monitors
  Good for scheduling and mutex
  Maybe costly for a simple signaling

26

Summary

  Semaphores
  Monitors
  Mesa-style monitor and its idiom
  Barriers

