COS 318: Operating Systems

Processes and Threads

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Today's Topics

Concurrency

Processes
Threads

Reminder:
e \Work on your implementation early

Concurrency and Process

Concurrency
e Hundreds of jobs going on in a system

e CPU is shared, so as I/O devices
e Each job would like to have its own computer

Process concurrency
e Decompose complex problems into simple ones
e Make each simple one a process
e Deal with one at a time
e Each process feels like having its own computer

Example: gcc (via “gcc —pipe —Vv") launches
e /usr/libexec/cpp | /usr/libexec/cc1 | /usr/libexec/as | /usr/libexec/elf/ld

e Each instance is a process

)c
[Ery IGET)

A G

®

Process Parallelism

¢ Virtualization
e Each process run for a while browser browser
e Make a CPU into many M —
e Each virtually has its own CPU gee
¢ |/O parallelism)
e CPU job overlaps with 1/O CPU 1/O CPU
e Each runs almost as fast as if it 3 2s 3 | gg
has its own computer CPU 1/0
e Reduce total completion time 3s 2s
¢ CPU parallelism cPU O
e Multiple CPUs (such as SMP) s
e Processes running in parallel CPU > 38
e Speedup 35 *

/

)‘
IGET)

A G 4

More on Process Parallelism

Process parallelism is common in real life
e Each sales person sell $1M annually
e Hire 100 sales people to generate $100M revenue

Speedup
e |deal speedup is factor of N
e Reality: bottlenecks + coordination overhead

Question
e Can you speedup by working with a partner?
e Can you speedup by working with 20 partners?
e Can you get super-linear (more than a factor of N) speedup?

Simplest Process

Sequential execution
e No concurrency inside a process
e Everything happens sequentially
e Some coordination may be required

Process state
e Registers
e Main memory

e |/O devices
* File system
« Communication ports

Program and Process

P e e S o = e

f main () " main ()
{ { heap
foo () . foo ()
} E E } stack
bar () E bar ()
{ B registers

e o o X 1 e o o PC

} }

Program L Process

[I R N e

Process vs. Program

Process > program
e Program is just part of process state
e Example: many users can run the same program

Process < program
e A program can invoke more than one process
e Example: Fork off processes

Process Control Block (PCB)

Process management info
o State
(Ready: ready to run.
Running: currently running.
Blocked: waiting for resources)
e Registers, EFLAGS, EIP, and other CPU state
e Stack, code and data segment
e Parents, etc
Memory management info
e Segments, page table, stats, etc
/O and file management
e Communication ports, directories, file descriptors, etc.
How OS takes care of processes
e Resource allocation and process state transition

Question: why is some information indirect?

API for Process Management

Creation and termination
e Exec, Fork, Wait, Kill

Signals

e Action, Return, Handler

Operations
e Block, Yield

Synchronization
e \We will talk about this later

10

Create A Process

Creation

Load code and data into memory

Create an empty call stack

Initialize state to same as after a process switch
Make the process ready to run

Clone
e Stop current process and save state

e Make copy of current code, data, stack and OS state
e Make the process ready to run

11

Unix Example

¢ Methods to make processes:

e fork clones a process
e exec overlays the current process

pid = fork();
if (pid == 0)
/* child process */
exec (“foo”); /* does not return */
Else
/* parent */
wait (pid) ; /* wait for child to die */

12

Fork and Exec in Unix

Pl
if

el

foo:

d =

pid = fork();
if (pid 0)
exec (“foo”) ;
else
wait (pid) ;

Main ()

(p1d
exec (“foo
se

wait (pid) ;

~—

pid = fork();
if (pid 0)
exec (Y“foo”) ;
else
wait (pid) ;

— > Wait

13

More on Fork

Parent process has a
PCB and an address
space

Create and initialize PCB
Create an address space

Copy the content of the
parent address space to
the new address space

Inherit the execution
context of the parent

New process is ready

New
address
space

Parent
address
space

PCB

PCB

14

Process Context Switch

Save a context (everything that a process may damage)
e All registers (general purpose and floating point)

e All co-processor state

e Save all memory to disk?

e \What about cache and TLB stuff?

Start a context
e Does the reverse

Challenge

e OS code must save state without changing any state
e How to run without touching any registers?

« CISC machines have a special instruction to save and restore all
registers on stack

« RISC: reserve registers for kernel or have way to carefully save
one and then continue

(IGET)

TR

Process State Transition

Create

Resource becomes
available

Terminate

16

Threads

Thread

e A sequential execution stream within a process (also called
lightweight process)

e Threads in a process share the same address space

Thread concurrency
e Easier to program I/O overlapping with threads than signals
e Human likes to do several things at a time: Web browsers
e A server (e.g. file server) serves multiple requests
e Multiple CPUs sharing the same memory

17

Thread Control Block (TCB)

e State

* Ready: ready to run
* Running: currently running
» Blocked: waiting for resources

e Registers

e Status (EFLAGS)

e Program counter (EIP)
e Stack

e Code

18

Typical Thread API

Creation

e Fork, Join

Mutual exclusion

e Acquire (lock), Release (unlock)

Condition variables
e Wait, Signal, Broadcast

Alert
e Alert, AlertWait, TestAlert

19

Revisit Process

Process

e Threads
e Address space
e Environment for the threads to run on OS (open files, etc)

Simplest process has 1 thread

53 e 333

20

Thread Context Switch

®
Save a context (everything that a thread may damage)

e All registers (general purpose and floating point)
e All co-processor state

e Need to save stack?
e \What about cache and TLB stuff?

Start a context
e Does the reverse

May trigger a process context switch

21

Procedure Call

o000
¢ Caller or callee save some context (same stack)

¢ Caller saved example:

save active caller registers

call foo -

foo () {
do stuff

R

restore caller regs

22

Threads vs. Procedures

Threads may resume out of order
e Cannot use LIFO stack to save state
e Each thread has its own stack

Threads switch less often
e Do not partition registers
e Each thread “has” its own CPU

Threads can be asynchronous
e Procedure call can use compiler to save state synchronously
e Threads can run asynchronously

Multiple threads
e Multiple threads can run on multiple CPUs in parallel
e Procedure calls are sequential

“
L Ery e

TR

Process vs. Threads

Address space
e Processes do not usually share memory

e Process context switch page table and other memory
mechanisms

e Threads in a process share the entire address space
Privileges

e Processes have their own privileges (file accesses, €.g.)
e Threads in a process share all privileges

Question
e Do you really want to share the “entire” address space?

24

Real Operating Systems

One or many address spaces
One or many threads per address space

1 address space

Many address spaces

1 thread per
address space

MSDOS
Macintosh

Traditional Unix

Many threads per
address spaces

Embedded OS,
Pilot

VMS, Mach (OS-X), OS/2,
Windows NT/XP/Vista/7,

Solaris, HP-UX, Linux

25

Summary

Concurrency

e CPUand I/O
e Among applications
e Within an application

Processes
e Abstraction for application concurrency

Threads

e Abstraction for concurrency within an application

26

