COS 318: Operating Systems

Mutex Implementation

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Today's Topics

Disabling Interrupts for mutual exclusion
Hardware support for mutual exclusion
Competitive spinning

Revisit Mutual Exclusion (Mutex)

Critical section

\

Acquire (lock) ;

if (noMilk)
buy milk;

Release (lock),;

. Critical section

Conditions of a good solution
e Only one process/thread inside a critical section
e No assumption about CPU speeds

e A process/thread inside a critical section should not be blocked by any
processes/threads outside the critical section

e No one waits forever

e Works for multiprocessors
e Same code for all processes/threads

Use and Disable Interrupts

Use interrupts

e Implement preemptive CPU scheduling
e Internal events to relinquish the CPU
e External events to reschedule the CPU

Disable interrupts

CPU

e |ntroduce uninterruptible code regions

e Think sequentially most of the time
e Delay handling of external events

Uninterruptible

region

Disablelnt()

{ Enabielnt()

\/

A Simple Way to Use Disabling Interrupts
®

Acquire () {
disable interrupts; Acquire()

}

critical section?

Release () { Release()

enable interrupts;
) .

Issues with this approach?

One More Try

Acquire (lock) { Release (lock) {

disable interrupts; disable interrupts;
while (lock.value != FREE) lock.value = FREE:

’ enable interrupts;
lock.value = BUSY; }

enable interrupts;

}

Issues with this approach?

Another Try

Acquire (lock) { Release (lock) {
disable interrupts; disable interrupts;
while (lock.value != FREE) { lock.value = FREE:

enable interrupts; enable interrupts;
disable interrupts; }

}
lock.value = BUSY;

enable interrupts;

}

Does this fix the “wait forever” problem?

Yet Another Try

Acquire (lock) { Release(lock) {
disable interrupts; disable interrupts;
while (lock.value == BUSY) if (anyone in queue)
{ dequeue a thread;

enqueue me for lock; make it ready;
Yield() ; }
} lock.value = FREE;
lock.value = BUSY; enable interrupts;
enable interrupts; }

}
Any issues with this approach?

Atomic Memory Load and Store

Assumed in in textbook (e.g. Peterson’s solution)

int turn;
int interested|[N];

void enter region(int process)

{

int other;

other = 1 - process;
interested|[process] = TRUE;
turn = process;

while (turn == process && interested[other] == TRUE) ;
}

L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM
Trans. on Computer Systems, 5(1):1-11, Feb 1987.

e 5 writes and 2 reads

“
L Ery e

TR

Atomic Read-Modify-Write Instructions

LOCK prefix in x86
e Make a specific set instructions atomic
e Together with BTS to implement Test&Set

Exchange (xchg, x86 architecture)

e Swap register and memory
e Atomic (even without LOCK)

Fetch&Add or Fetch&Op
e Atomic instructions for large shared memory multiprocessor
systems
Load link and conditional store
e Read value in one instruction (load link)

e Do some operations;

e \When store, check if value has been modified. If not, ok;
otherwise, jump back to start

“
e

TR

10

A Simple Solution with Test&Set

Define TAS(lock)

e If successfully set, return 1;
e Otherwise, return O;

Any issues with the following solution?

Acquire (lock) {
while (!TAS(lock.wvalue))

}

Release (lock.value) {
lock = 0;

}

11

What About This Solution?

Acquire (lock) { Releése(lock) {

while (!TAS (lock.guard)) while (!TAS(lock.guard))

if (lock.value) { if (anyone in queue) {
enqueue the thread; deque?e a thread;
block and lock.guard = 0; make it ready;

} else { } else
lock.value = 1; lock.value = 0;
lock.guard = 0; lock.guard = 0;

} }
}

How long does the “busy wait” take?

'«
4 [
®

12

Example: Protect a Shared Variable

Acquire (lock)
count++;
Release (lock)

Acquire(mutex) system call

Pushing parameter, sys call # onto stack
Generating trap/interrupt to enter kernel

Jump to appropriate function in kernel

Verify process passed in valid pointer to mutex
Minimal spinning

Block and unblock process if needed

Get the lock

Executing “count++;”
Release(mutex) system call

“
e

TR

13

Available Primitives and Operations

Test-and-set
e \Works at either user or kernel

System calls for block/unblock

e Block takes some token and goes to sleep
e Unblock “wakes up” a waiter on token

14

Block and Unblock System Calls

Block(lock)

Spin on lock.guard
Save the context to TCB
Enqueue TCB to lock.q
Clear lock.guard

Call scheduler

Questions
e Do they work?
e Can we get rid of the spin lock?

Unblock(lock)

Spin on lock.guard
Dequeue a TCB from lock.q
Put TCB in ready queue
Clear lock.guard

15

Always Block

Acquire (lock) { Release (lock) {
while (!'TAS(lock.value)) lock.value = 0;
Block(lock); Unblock(lock);

} }

What are the issues with this approach?

Always Spin

Acquire (lock) { Release (lock) {
while (!'TAS(lock.value)) lock.value = 0;
while (lock.value) }

}
Two spinning loops in Acquire () ?

CPU CPU CPU CPU
L1$ L1$ L1 $ o L19$
L2 $ L2 $
P\%fz 3 —-e-
Memory
Multicore

SMP

Optimal Algorithms

What is the optimal solution to spin vs. block?
e Know the future
e Exactly when to spin and when to block

But, we don’t know the future

e There is no online optimal algorithm \ \
\
3 I
Offline optimal algorithm /
e Afterwards, derive exactly when to block or spin (“what if”)

e Useful to compare against online algorithms

(IGET)

TR

Competitive Algorithms

An algorithm is c-competitive if
for every input sequence o

CA(O) SCXx Copt(O) + K

® C IS a constant

e C,(0) is the cost incurred by algorithm A in processing o

o C,,(0)is the cost incurred by the optimal algorithm in
processing o

What we want is to have ¢ as small as possible
e Deterministic
e Randomized

(IGET)

TR

Constant Competitive Algorithms

Acquire (lock, N) {
int 1i;

while (!TAS(lock.value)) {
i = N;

while (!'lock.value && 1i)
i--;

if ('1i)
Block (lock) ;
}
}

Spin up to N times if the lock is held by another thread
If the lock is still held after spinning N times, block

If spinning N times is equal to the context-switch time, what is the
competitive factor of the algorithm?

Approximate Optimal Online Algorithms

Main idea
e Use past to predict future

Approach

e Random walk
« Decrement N by a unit if the last Acquire() blocked
* Increment N by a unit if the last Acquire() didn’t block

e Recompute N each time for each Acquire() based on some
lock-waiting distribution for each lock

Theoretical results
E Cp(o (P)) = (el(e-1)) x E C,,(o(P))

The competitive factor is about 1.58.

)c
IGET)

TR

21

Empirical Results

/\ /\OCQ

Block Spin Fixed C/2\ Fixed C Opt Online 3-samples /R-walk
Nub (2h) 1.943 2.962 1.503 1.559 1.078 1.225 1.093
Taos (24h) 1.715 3.366 1.492 1.7567 1.141 1.212 1.213
Taos (M2+4) 1.776 3.535 1.483 1.750 1.106 1.177 1.160
Taos (Regsim) 1.578 3.293 1.499 1.748 1.161 1.260 1.268
Ivy (100m) 5.171 2.298 1.341 1.438 1.133 1.212 1.167
Ivy (18h) 7.243 1.562 1.274 1.233 1.109 1.233 1.141
Galaxy 2.897 2.667 1.419 1.740 1.237 1.390 1.693
Hanoi 2.997 2.976 1.418 1.726 1.200 1.366 1.642
Regsim 4.675 1.302 1.423 1.374 1.183 1.393 1.366

Table 1: Synchronization costs for eMogram relative to the optimal off-line a]gw

Max Flapsed time Improvement

spins (seconds)
Always-block N/A 10529.5 0.0%
Always-spin N/A 8256.3 21.5%
Fixed-spin 100 9108.0 13.5%)) _

200 8000.0 A. Karlin, K. Li, M. Manasse, and S. Owicki,

Opt-known 1008 7881.4 25.1% “Empirical Studies of Competitive Spinning
Opt-approx 1008 8171.2 22.3% for a Shared-Memory Multiprocessor,”
3-samples 1008 8011.6 23.9% Proceedings of the 13" ACM Symposium
Random-walk 1008 7929.7 [24.7% | on Operating Systems Principle, 1991.

ning strategies.

Table 3: Elapsed times of Regsim using different spin-

22

The Big Picture

OS codes and concurrent applications

High-Level
Atlgmic A\\/PI Mutex Semaphores Monitors Send/Recv
Low-Level Int t i
OW_ eve Load/store _ nterrip Test&Set cher atp mic
Atomic Ops disable/enable Instructions
Interrupts CPU

Multiprocessors

(I/O, timer) scheduling

23

Summary

Disabling interrupts for mutex
e There are many issues
e \WWhen making it work, it works for only uniprocessors

Atomic instruction support for mutex
e Atomic load and stores are not good enough
e Test&set and other instructions are the way to go
Competitive spinning
e Spin at the user level most of the time
e Make no system calls in the absence of contention
e Have more threads than processors

24

