
COS 318: Operating Systems

Snapshot and NFS

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Topics

  Revisit Transactions and Logging
  NetApp File System
  NFS

3

Transactions

  Bundle many operations into a transaction
  One of the first transaction systems is Sabre American Airline

reservation system, made by IBM
  Primitives

  BeginTransaction
•  Mark the beginning of the transaction

  Commit (End transaction)
•  When transaction is done

  Rollback (Abort transaction)
•  Undo all the actions since “Begin transaction.”

  Rules
  Transactions can run concurrently
  Rollback can execute anytime
  Sophisticated transaction systems allow nested transactions

4

Implementation
  BeginTransaction

  Start using a “write-ahead” log on disk
  Log all updates

  Commit
  Write “commit” at the end of the log
  Then “write-behind” to disk by writing updates to disk
  Clear the log

  Rollback
  Clear the log

  Crash recovery
  If there is no “commit” in the log, do nothing
  If there is “commit,” replay the log and clear the log

  Assumptions
  Writing to disk is correct (recall the error detection and correction)
  Disk is in a good state before we start

5

Use Transactions in File Systems

  Make a file operation a transaction
  Create a file
  Move a file
  Write a chunk of data
  …
  Would this eliminate any need to run fsck after a crash?

  Make arbitrary number of file operations a transaction
  Just keep logging but make sure that things are idempotent:

making a very long transaction
  Recovery by replaying the log and correct the file system
  This is called journaling file system
  Almost all new file systems are journaling (Windows NTFS,

Veritas file system, file systems for Linux)

6

NetApp’s NFS File Server

  WAFL: Write Anywhere File Layout
  The basic NetApp’s file system

  Design goals
  Fast services (fast means more operations/sec and higher

bandwidth)
  Support large file systems and allow growing smoothly
  High-performance software RAID
  Restart quickly after a crash

  Special features
  Introduce snapshots
  Use NVRAM to reduce latency and maintain consistency

7

Snapshots

  A snapshot is a read-only copy of the file system
  Introduced in 1993
  It has become a standard feature of today’s file server

  Use snapshots
  System administrator configures the number and frequency of snapshots
  An initial system can keep up to 20 snapshots
  Use snapshots to recover individual files

  An example
arizona% cd .snapshot
arizona% ls
hourly.0 hourly.2 hourly.4 nightly.0 nightly.2 weekly.1
hourly.1 hourly.3 hourly.5 nightly.1 weekly.0
arizona%

  How much space does a snapshot consume?
  10-20% space per week

8

i-node, Indirect and Data Blocks

  WAFL uses 4KB blocks
  i-nodes (evolved from UNIX’s)
  Data blocks

  File size < 64 bytes
  i-node stores data directly

  File size < 64K bytes
  i-node stores 16 pointers to data

  File size < 64M bytes
  i-node stores 16 pointers to

indirect blocks
  Each indirect pointer block stores

1K pointers to data
  File size > 64M bytes

  i-node stores pointers to doubly
indirect blocks

Data Data Data

Data Data

Data

Data Data Data

9

WAFL Layout

  A WAFL file system has
  A root i-node: root of everything
  An i-node file: contains all i-nodes
  A block map file: indicates free blocks
  An i-node map file: indicates free i-nodes
  Data files: real files that users can see

Metadata
in files

10

Why Keeping Metadata in Files

  Allow meta-data blocks to be written anywhere on disk
  This is the origin of “Write Anywhere File Layout”
  Any performance advantage?

  Easy to increase the size of the file system dynamically
  Add a disk can lead to adding i-nodes
  Integrate volume manager with WAFL

  Enable copy-on-write to create snapshots
  Copy-on-write new data and metadata on new disk locations
  Fixed metadata locations are cumbersome

11

Snapshot Implementation
  WAFL file system is a tree of

blocks
  Snapshot step 1

  Replicate the root i-node
  New root i-node is the active file

system
  Old root i-node is the snapshot

  Snapshot step 2…n
  Copy-on-write blocks to the root
  Active root i-node points to the new

blocks
  Writes to the new block
  Future writes into the new blocks will

not trigger copy-on-write
  An “add-on” snapshot mechanism

for a traditional file system?

C

1

Root Root

A F D B C

1 2

Modify

C’

Modify

1’

12

File System Consistency

  Create a snapshot
  Create a consistency point or snapshot every 10 seconds
  On a crash, revert the file system to this snapshot
  Not visible by users

  Many requests between consistency points
  Consistency point i
  Many writes
  Consistency point i+1 (advanced atomically)
  Many writes
  …

  Question
  Any relationships with transactions?

13

Non-Volatile RAM

  Non-Volatile RAM
  Flash memory (slower)
  Battery-backed DRAM (fast but battery lasts for only days)

  Use an NVRAM to buffer writes
  Buffer all write requests since the last consistency point
  A clean shutdown empties NVRAM, creates one more

snapshot, and turns off NVRAM
  A crash recovery needs to recover data from NVRAM to the

most recent snapshot and turn on the system
  Use two logs

  Buffer one while writing another
  Issues

  What is the main disadvantage of NVRAM?
  How large should the NVRAM be?

14

Write Allocation

  WAFL can write to any blocks on disk
  File metadata (i-node file, block map file and i-node map file)

is in the file system
  WAFL can write blocks in any order

  Rely on consistency points to enforce file consistency
  NVRAM to buffer writes to implement ordering

  WAFL can allocate disk space for many NFS operations
at once in a single write episode
  Reduce the number of disk I/Os
  Allocate space that is low latency

  Issue
  What about read performance?

15

Snapshot Data Structure

  WAFL uses 32-bit
entries in the block
map file
  32-bit for each 4KB

disk block
  32-bit entry = 0: the

block is free
  Bit 0 = 1:

active file system
references the block

  Bit 1 = 1:
the most recent snapshot

references the block

16

Snapshot Creation

  Problem
  Many NFS requests may arrive while creating a snapshot
  File cache may need replacements
  Undesirable to suspend the NFS request stream

  WAFL solution
  Before a creation, mark dirty cache data “in-snapshot” and

suspend NFS request stream
  Defer all modifications to “in-snapshot” data
  Modify cache data not marked “in-snapshot”
  Do not flush cache data not marked “in-snapshot”

17

Algorithm

  Steps
  Allocate disk space for “in-snapshot” cached i-nodes

•  Copy these i-nodes to disk buffer
•  Clear “in-snapshot” bit of all cached i-nodes

  Update the block-map file
•  For each entry, copy the bit for active FS to the new snapshot

  Flush
•  Write all “in-snapshot” disk buffers to their new disk locations
•  Restart NFS request stream

  Duplicate the root i-node
  Performance

  Typically it takes less than a second

18

Snapshot Deletion

  Delete a snapshot’s root i-node
  Clear bits in block-map file

  For each entry in block-map file, clear the bit representing the
snapshot

19

Performance

  SPEC SFS benchmark shows 8X faster than others

20

Network File System

  Sun introduced NFS v2 in early 80s
  NFS server exports directories to clients
  Clients mount NFS server’s exported directories

(auto-mount is possible)
  Multiple clients share a NFS server

Network NFS server Clients

21

NFS Protocol (v3)
1.  NULL: Do nothing
2.  GETATTR: Get file attributes
3.  SETATTR: Set file attributes
4.  LOOKUP: Lookup filename
5.  ACCESS: Check Access Permission
6.  READLINK: Read from symbolic link
7.  READ: Read From file
8.  WRITE: Write to file
9.  CREATE: Create a file
10.  MKDIR: Create a directory
11.  SYMLINK: Create a symbolic link
12.  MKNOD: Create a special device
13.  REMOVE: Remove a File
14.  RMDIR: Remove a Directory
15.  RENAME: Rename a File or Directory
16.  LINK: Create Link to an object
17.  READDIR: Read From Directory
18.  READDIRPLUS: Extended read from directory
19.  FSSTAT: Get dynamic file system information
20.  FSINFO: Get static file system Information
21.  PATHCONF: Retrieve POSIX information
22.  COMMIT: Commit cached data on a server to

stable storage

22

NFS Protocol

  No open and close
  Use a global handle in the protocol

  Read some bytes
  Write some bytes

  Questions
  What is stateless?
  Is NFS stateless?
  What is the tradeoffs of stateless vs. stateful?

23

NFS Implementation

Virtual file system

Client kernel

Local
FS

Local
FS

NFS
client

Buffer cache

Virtual file system

Local
FS

Local
FS

NFS
server

Buffer cache

NFS Server

Network

24

NFS Client Caching Issues

  Client caching
  Read-only file and directory data (expire in 60 seconds)
  Data written by the client machine (write back in 30 seconds)

  Consistency issues
  Multiple client machines can perform writes to their caches
  Some cache file data only and disable client caching of a file if

it is opened by multiple clients
  Some implement a network lock manager

25

NFS Protocol Development
  Version 2 issues

  18 operations
  Size: limit to 4GB file size
  Write performance: server writes data synchronously
  Several other issues

  Version 3 changes (most products still use this one)
  22 operations
  Size: increase to 64 bit
  Write performance: WRITE and COMMIT
  Fixed several other issues
  Still stateless

  Version 4 changes
  42 operations
  Solve the consistency issues
  Security issues
  Stateful

26

Summary

  Consistent updates
  Transactions use a write-ahead log and write-behind to update
  Journaling file systems use transactions

  WAFL
  Write anywhere layout
  Snapshots have become a standard feature

  NFS
  Stateless network file system protocol
  Client and server caching

