
COS 318: Operating Systems

Virtual Machine Monitors

Prof. Margaret Martonosi
Computer Science Department
Princeton University

Abstraction

  Computer systems are built
on levels of abstraction

  Higher level of abstraction
hide details at lower levels

The “Machine”

  Different perspectives on what
the Machine is:

  OS developer

 Instruction Set Architecture
 ISA
 Major division between hardware

and software I/O devices
and

Networking

System Interconnect
(bus)

Memory
Translation

Execution Hardware

Application
Programs

Main
Memory

Operating System

Libraries

The “Machine”

  Different perspectives on what
the Machine is:

  Compiler developer

 Application Binary Interface
•  ABI
•  User ISA + OS calls

I/O devices
and

Networking

System Interconnect
(bus)

Memory
Translation

Execution Hardware

Application
Programs

Main
Memory

Operating System

Libraries

The “Machine”

  Different perspectives on what
the Machine is:

  Application programmer

 Application Program Interface
•  API
•  User ISA + library calls

I/O devices
and

Networking

System Interconnect
(bus)

Memory
Translation

Execution Hardware

Application
Programs

Main
Memory

Operating System

Libraries

Advantages of Abstraction & Standard
Interfaces
  Major design tasks are decoupled

  In space and time
  Different hardware and software

development schedules
  Software can run on any machine supporting a

compatible interface

x86

Linux

Linux apps

x86

Windows

Windows apps.

But, where are we now? …

  Software compiled for one ISA will not run on hardware
with a different ISA
  ARM vs x86?

  Even if ISAs are the same, OSes may differ
  Windows 8 vs. Linux?

  Binary may not be optimized for the specific hardware
platform it runs on
  Intel Pentium 4 binaries on an AMD Athlon?

Apple OS X

Apple SW

ARM x86

Windows apps.

Linux

Hardware Resources

  Conventional system software manages hardware
resources directly
  An OS manages the physical memory of a specific size
  I/O devices are managed as physical entities

  Difficult to share resources except through OS
  All users of hardware must use the same OS
  All users are vulnerable to attack from other users sharing

the resource (via security holes in OS)

Hardware
"Machine"

OS

Applications

Virtualizing
Software

Guest

VMM

Host

Virtual Machines

add Virtualizing Software to a Host platform
and support Guest process or system on a Virtual Machine (VM)

Example: System Virtual Machine

Goal: Guest OS &
Apps unaware of
Virtualization
underneath them.

Virtual Machines: Introduction

 Have been around since 1960’s on mainframes
  used for multitasking
  Good example – VM/370

 Have resurfaced on commodity platforms
  Server Consolidation
  Web Hosting centers
  High-Performance Compute Clusters
  Managed desktop / thin-client
  Software development / kernel hacking

VMM Functions: Multiplex VMs

VMM Functions: Suspend a VM

VMM Functions: Resume (Provision)

VMM Functions: Migrate

Goals
 Manageability

  Ease maintenance, administration, provisioning, etc.
 Performance

  Overhead of virtualization should be small

 Power Savings
  Server Consolidation

  Isolation
  Activity of one VM should not impact other active VMs
  Data of one VM is inaccessible by another

 Scalability
  Minimize cost per VM

VMM Types

For VM approaches you have used, which type are they?

VMM Challenges

What seems difficult about building VM approaches?

Virtual Machine Monitor (VMM)

  Resides as a layer below the (guest) operating system

  Presents a hardware interface to a (guest) OS

  Multiplexes resources between several virtual machines
(VMs)

  Performance Isolates VMs from each other

When/Why/How would all this be useful?

Virtualization Styles
  Fully virtualizing VMM

  Virtual machine looks exactly like some physical machine.
  (But maybe not the one you’re running on right now.)
  Run OS or other software unchanged (from the machine the VM mimics)

  Para- virtualizing VMM
  Some architecture features are hard to virtualize, so exact copy is too

difficult (or slow).
  Instead, punt on a few features.
  VMM provides idealized view of hardware and then fixes under the

covers.
  Since the VMM doesn’t match any real hardware, an OS running on it

MUST be changed, not legacy.

If you are an application programmer, how could you
figure out whether your code is running FV, PV, or non-
Virtualized?

VMM Implementation

Should efficiently virtualize
the hardware

  Provide illusion of
multiple machines

  Retain control of the
physical machine

Subsystems
  Processor Virtualization
  I/O virtualization
  Memory Virtualization

20

I/O devices
and

Networking

System Interconnect
(bus)

Memory
Translation

Execution Hardware

Application
Programs

Main
Memory

Operating System

Libraries

Processor Virtualization

Popek and Goldberg (1974)
  Sensitive instructions: only executed in kernel mode
  Privileged instructions: trap when run in user mode
  CPU architecture is virtualizable only if sensitive

instructions are subset of privileged instructions

  When guest OS runs a sensitive instruction, must trap to
VMM so it maintains control

21

x86 Processor Virtualization

  x86 architecture is not fully virtualizable
  Certain privileged instructions behave differently when

run in unprivileged mode
•  POPF instruction that is used to set and clear the

interrupt-disable flag. If run in user mode, it has no
effect: it’s a NO-OP.

  Certain unprivileged instructions can access privileged
state

 Techniques to address inability to virtualize x86
  Replace non-virtualizable instructions with easily

virtualized ones statically (Paravirtualization)
  Perform Binary Translation (Full Virtualization)

22

I/O Virtualization

  Issue: lots of I/O devices
 Problem: Writing device drivers for all I/O device in

the VMM layer is not a feasible option
  Insight: Device driver already written for popular

Operating Systems
 Solution: Present virtual I/O devices to guest VMs

and channel I/O requests to a trusted host VM
running popular OS

23

I/O Virtualization

24

VMM + Device Drivers VMM

Higher performance, but PITA
to write all the drivers

Lower performance, but reuses
drivers guest OS already has.

Memory Virtualization

  Traditional way is to have the VMM maintain a shadow of
the VM’s page table

  The shadow page table controls which pages of machine
memory are assigned to a given VM

  When guest OS updates its page table, VMM updates
the shadow

25

Another layer of indirection…

Case Study: VMware ESX Server

  Type I VMM - Runs on bare hardware

  Full-virtualized – Legacy OS can run unmodified on top of
ESX server

  Fully controls hardware resources and provides good
performance

27

ESX Server – CPU Virtualization

 Most user code executes in Direct Execution
mode; near native performance

 Uses runtime Binary Translation for x86
virtualization
  Privileged mode code is run under control of a Binary

Translator, which emulates problematic instructions
  Fast compared to other binary translators as source and

destination instruction sets are nearly identical

28

ESX Server – Memory Virtualization
  Maintains shadow page tables with virtual to machine

address mappings.
  Shadow page tables are used by the physical processor
  Guest OS page table: maps virtual addresses to

“physical” addresses (note quotes)
  ESX maintains the pmap data structure per VM: maps

“physical” to machine address mappings
  Shadow page table holds the combined effects of these

two map steps
  ESX can easily remap a machine page when needed

29

ESX Server – I/O Virtualization

  Has highly optimized storage subsystem for networking
and storage devices
  Directly integrated into the VMM
  Uses device drivers from the Linux kernel to talk directly to the

device
  Low performance devices are channeled to special “host”

VM, which runs a full Linux OS

30

Virtualization: Remaining challenges?

  One big one is “demand estimation”
  Normally the OS manages resources,

but in this case, the VMM is
supposed to mediate between
multiple entities each running
different apps/OSs.

  How to know what they really need?
  One example:

Canturk Isci, James Hanson, Ian Whalley,
Malgorzata Steinder and Jeff Kephart ,
Runtime Demand Estimation for Effective
Dynamic Resource Management. In IEEE/
IFIP Network Operations and Management
Symposium (NOMS). Osaka, Japan, Apr.
2010.

Nov-14-12

IBM Research

Energy Efficient Clouds | Canturk Isci 32

 Host1: ON
Capacity: 100%
Used:
100%

A Motivating Example:
Dynamic Resource Management w/o Demand Knowledge

VM1: (10%,10%)

VM2: (10%,10%)

VM3: (10%,10%)

VM4: (10%,10%)

VM5: (10%,10%)

VM6: (10%,10%)

VM7: (10%,10%)

VM8: (10%,10%)

 Host1: ON
Capacity: 100%
Used:
80%

 Host2: OFF
Capacity: 0%
Used:
0%

 Host3: OFF
Capacity: 0%
Used:
0%

VM1: (12.5%,?%)

VM2: (12.5%,?%)

VM3: (12.5%,?%)

VM4: (12.5%,?%)

VM5: (12.5%,?%)

VM6: (12.5%,?%)

VM7: (12.5%,?%)

VM8: (12.5%,?%)

 No contention
Resource contention
VM: (<usage>,<demand>)

0. Initially all VMs: 10% demand

1. Demand rises to 25%

Nov-14-12

IBM Research

Energy Efficient Clouds | Canturk Isci 33

 Host2: ON
Capacity: 100%
Used:
0%

VM1: (12.5%,?%)

VM2: (12.5%,?%)

VM3: (12.5%,?%)

VM4: (12.5%,?%)

VM5: (12.5%,?%)

VM6: (12.5%,?%)

VM7: (12.5%,?%)

 Host1: ON
Capacity: 100%
Used: 100%

 Host2: ON
Capacity: 100%
Used:
50%

 Host3: OFF
Capacity: 0%
Used:
0%

VM8: (12.5%,?%)

A Motivating Example:
Dynamic Resource Management w/o Demand Knowledge

 No contention
Resource contention
VM: (<usage>,<demand>)

0. Initially all VMs: 10% demand

1. Demand rises to 25%
Host2 powered ON
Two VMs moved out

Nov-14-12

IBM Research

Energy Efficient Clouds | Canturk Isci 34

 Host2: ON
Capacity: 100%
Used:
75%

VM1: (16%,?%)

VM2: (16%,?%)

VM3: (16%,?%)

VM4: (16%,?%)

VM5: (16%,?%)

VM6: (16%,?%)

 Host1: ON
Capacity: 100%
Used: 100%

 Host2: ON
Capacity: 100%
Used:
50%

 Host3: OFF
Capacity: 0%
Used:
0%

VM8: (25%,25%)

VM7: (25%,25%)

A Motivating Example:
Dynamic Resource Management w/o Demand Knowledge

 No contention
Resource contention
VM: (<usage>,<demand>)

0. Initially all VMs: 10% demand

1. Demand rises to 25%
Host2 powered ON
Two VMs moved out

2. VMs on Host1 inflate more
One more VM moved out

Nov-14-12

IBM Research

Energy Efficient Clouds | Canturk Isci 35

 Host2: ON
Capacity: 100%
Used:
75%

VM1: (20%,?%)

VM2: (20%,?%)

VM3: (20%,?%)

VM4: (20%,?%)

 Host1: ON
Capacity: 100%
Used: 100%

 Host3: OFF
Capacity: 0%
Used:
0%

VM8: (25%,25%)

VM7: (25%,25%)

VM6: (25%,25%)

 Host3: ON
Capacity: 100%
Used:
0%

VM5: (20%,?%)

 Host3: ON
Capacity: 100%
Used:
25%

A Motivating Example:
Dynamic Resource Management w/o Demand Knowledge

 No contention
Resource contention
VM: (<usage>,<demand>)

0. Initially all VMs: 10% demand

1. Demand rises to 25%
Host2 powered ON
Two VMs moved out

2. VMs on Host1 inflate more
One more VM moved out

3. VMs on Host1 inflate more
Host3 powered ON
One more VM moved out

Nov-14-12

IBM Research

Energy Efficient Clouds | Canturk Isci 36

 Host3: ON
Capacity: 100%
Used:
25%

 Host2: ON
Capacity: 100%
Used:
75%

VM1: (25%,25%)

VM2: (25%,25%)

VM3: (25%,25%)

 Host1: ON
Capacity: 100%
Used: 100%

VM8: (25%,25%)

VM7: (25%,25%)

VM6: (25%,25%)

VM5: (25%,25%)

 Host3: ON
Capacity: 100%
Used:
50%

 Host1: ON
Capacity: 100%
Used: 75%

VM4: (25%,25%)

A Motivating Example:
Dynamic Resource Management w/o Demand Knowledge

 No contention
Resource contention
VM: (<usage>,<demand>)

0. Initially all VMs: 10% demand

1. Demand rises to 25%
Host2 powered ON
Two VMs moved out

2. VMs on Host1 inflate more
One more VM moved out

3. VMs on Host1 inflate more
Host3 powered ON
One more VM moved out

4. VMs on Host1 inflate more
One more VM moved out

Not very nimble!

Nov-14-12

IBM Research

Energy Efficient Clouds | Canturk Isci 37

If We Only Knew Actual Demand

VM1: (12.5%,25%)
VM2: (12.5%,25%)
VM3: (12.5%,25%)
VM4: (12.5%,25%)
VM5: (12.5%,25%)
VM6: (12.5%,25%)
VM7: (12.5%,25%)
VM8: (12.5%,25%)

VM1: (25%,25%)

VM2: (25%,25%)

VM3: (25%,25%)

VM6: (25%,25%)

VM7: (25%,25%)

VM8: (25%,25%)

VM4: (25%,25%)

VM5: (25%,25%)

 With better demand estimation:
we could nimbly reach the right
configuration in one shot!

Nov-14-12

IBM Research

Energy Efficient Clouds | Canturk Isci 38

Our Solution: CPU Accounting & Demand Estimation
  Hypothetical Example: (t~ hypervisor scheduling quantum)
 1 Host: 2PCPUs 200% Capacity
10 VMs: 1VCPU, 80% CPU: [4t Run + 1t Sleep]

t: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
VM1: U R R R R U R R R R U R R R R U W R R R U R R R
VM2: U R R R R U R R R R U R R R R U W R R R U R R R
VM3: R U R R R R U R R R R U R R R R U W R R R U R R
VM4: R U R R R R U R R R R U R R R R U W R R R U R R
VM5: R R U R R R R U R R R R U R R R R U W R R R U R
VM6: R R U R R R R U R R R R U R R R R U W R R R U R
VM7: R R R U R R R R U R R R R U R R R R U W R R R U
VM8: R R R U R R R R U R R R R U R R R R U W R R R U
VM9: R R R R U R R R R U R R R R U R R R R U W R R R

VM10: R R R R U R R R R U R R R R U R R R R U W R R R

U: Used | R: Ready | W: Wait

Nov-14-12

IBM Research

Energy Efficient Clouds | Canturk Isci 39

Evaluation Case Study

 Cluster:

Experiment similar to motivational example
Pack all VMs on Host1
Increase load
Evaluate with and without demand estimation

CPU

CPU

CPU

CPU

 2 Hosts
2 CPU
200% each

CPU CPU CPU CPU CPU

 5VMs, 1CPU, 0-100% each

VM1: 100%[20mins]
VM2: 80%[20mins]
VM3: 60%[20mins]
VM4: 40%[20mins]
VM5: 20%[20mins]

V
M

D

em
an

d

t

Load Configuration:

Nov-14-12

IBM Research

Energy Efficient Clouds | Canturk Isci 40

Dynamic Placement Steps

Baseline Demand
Estimation

One-shot resolution instead of the iterative process!

0

1

2

3

Pe
rf

1

Pe
rf

_m
ig

r1

Pe
rf

2

Pe
rf

_m
ig

r2

Pe
rf

3

Pe
rf

_m
ig

r3

Pe
rf

_O
PT

Av
e

Se
rv

ic
e

Ti
m

e
[s

]

0

1

2

3

Pe
rf

1

Pe
rf

_m
ig

r1

Pe
rf

_O
PT

VM1 (100%)
VM2 (80%)
VM3 (60%)
VM4 (40%)
VM5 (20%)

Each host:
200% capacity

200%

Nov-14-12

IBM Research

Energy Efficient Clouds | Canturk Isci 41

Performance: Time to Converge

Reduce time required to converge to the optimal allocation by 2X!

Time to converge: ~480s

Time to converge: ~200s

Nov-14-12

IBM Research

Energy Efficient Clouds | Canturk Isci 42

Evaluation with Data Center Loads

Reduce aggregate performance degradation by 2X across all VMs!

Summary

  Virtualization is here:
  Compatibility and abstraction
  Server Consolidation
  Migration and maintenance

  Interesting design problems:
  Hardware Support
  Software design approaches

  Tons of Policy and measurement issues:
  Managing performance, power, fairness, …

COS 318: Operating Systems

Virtual Machine Monitors

Prof. Margaret Martonosi
Computer Science Department
Princeton University

Acknowledgments: Canturk Isci, Ravi Nair, Mendel
Rosenblum, James E. Smith.

