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Abstraction 

  Computer systems are built 
on levels of abstraction 

  Higher level of abstraction 
hide details at lower levels 



The “Machine” 

  Different perspectives on what 
the Machine is: 

  OS developer 

   Instruction Set Architecture 
 ISA 
 Major division between hardware 

and software I/O devices 
and 

Networking 

System Interconnect 
(bus) 

Memory 
Translation 

Execution Hardware 

Application 
Programs 

Main 
Memory 

Operating System 

Libraries 



The “Machine” 

  Different perspectives on what 
the Machine is: 

  Compiler developer 

   Application Binary Interface 
•  ABI 
•  User ISA + OS calls 

I/O devices 
and 

Networking 

System Interconnect 
(bus) 

Memory 
Translation 

Execution Hardware 

Application 
Programs 

Main 
Memory 

Operating System 
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The “Machine” 

  Different perspectives on what 
the Machine is: 

  Application programmer 

   Application Program Interface 
•  API 
•  User ISA + library calls 

I/O devices 
and 

Networking 

System Interconnect 
(bus) 

Memory 
Translation 

Execution Hardware 

Application 
Programs 

Main 
Memory 

Operating System 

Libraries 



Advantages of Abstraction & Standard 
Interfaces 
  Major design tasks are decoupled 

  In space and time 
  Different hardware and software                         

development schedules 
  Software can run on any machine supporting a 

compatible interface 

x86 

Linux 

Linux apps 

x86 

Windows 

Windows apps. 



But, where are we now? … 

  Software compiled for one ISA will not run on hardware 
with a different ISA 
  ARM vs x86? 

  Even if ISAs are the same, OSes may differ 
  Windows 8 vs. Linux? 

  Binary may not be optimized for the specific hardware 
platform it runs on 
  Intel Pentium 4 binaries on an AMD Athlon? 

Apple OS X 

Apple SW 

ARM x86 

Windows apps. 

Linux 



Hardware Resources 

  Conventional system software manages hardware 
resources directly 
  An OS manages the physical memory of a specific size 
  I/O devices are managed as physical entities 

  Difficult to share resources except through OS 
  All users of hardware must use the same OS 
  All users are vulnerable to attack from other users sharing 

the resource (via security holes in OS) 



Hardware 
"Machine" 

OS 

Applications 

Virtualizing 
Software 

Guest 

VMM 

Host 

Virtual Machines 

add Virtualizing Software to a Host platform 
and support Guest process or system on a Virtual Machine (VM) 

Example: System Virtual Machine 

Goal: Guest OS & 
Apps unaware of 
Virtualization 
underneath them. 



Virtual Machines: Introduction 

 Have been around since 1960’s on mainframes 
  used for multitasking 
  Good example – VM/370 

 Have resurfaced on commodity platforms 
  Server Consolidation 
  Web Hosting centers 
  High-Performance Compute Clusters 
  Managed desktop / thin-client 
  Software development / kernel hacking 



VMM Functions: Multiplex VMs 



VMM Functions: Suspend a VM 



VMM Functions: Resume (Provision) 



VMM Functions: Migrate 



Goals 
 Manageability 

  Ease maintenance, administration, provisioning, etc. 
 Performance 

  Overhead of virtualization should be small 

 Power Savings 
  Server Consolidation 

  Isolation 
  Activity of one VM should not impact other active VMs 
  Data of one VM is inaccessible by another 

 Scalability 
  Minimize cost per VM 



VMM Types 

For VM approaches you have used, which type are they? 



VMM Challenges 

What seems difficult about building VM approaches? 



Virtual Machine Monitor (VMM) 

  Resides as a layer below the (guest) operating system 

  Presents a hardware interface to a (guest) OS 

  Multiplexes resources between several virtual machines 
(VMs) 

  Performance Isolates VMs from each other 

When/Why/How would all this be useful? 



Virtualization Styles 
  Fully virtualizing VMM 

  Virtual machine looks exactly like some physical machine.  
  (But maybe not the one you’re running on right now.) 
   Run OS or other software unchanged (from the machine the VM mimics) 

  Para- virtualizing VMM 
  Some architecture features are hard to virtualize, so exact copy is too 

difficult (or slow). 
  Instead, punt on a few features. 
  VMM provides idealized view of hardware and then fixes under the 

covers. 
  Since the VMM doesn’t match any real hardware, an OS running on it 

MUST be changed, not legacy. 

If you are an application programmer, how could you 
figure out whether your code is running FV, PV, or non-
Virtualized? 



VMM Implementation 

Should efficiently virtualize 
the hardware 

  Provide illusion of 
multiple machines 

  Retain control of the 
physical machine 

Subsystems 
  Processor Virtualization 
  I/O virtualization 
  Memory Virtualization 
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Processor Virtualization 

Popek and Goldberg (1974) 
  Sensitive instructions: only executed in kernel mode 
  Privileged instructions: trap when run in user mode 
  CPU architecture is virtualizable only if sensitive 

instructions are subset of privileged instructions 

  When guest OS runs a sensitive instruction, must trap to 
VMM so it maintains control 

21 



x86 Processor Virtualization 

  x86 architecture is not fully virtualizable 
  Certain privileged instructions behave differently when 

run in unprivileged mode 
•  POPF instruction that is used to set and clear the 

interrupt-disable flag.  If run in user mode, it has no 
effect: it’s a NO-OP.  

  Certain unprivileged instructions can access privileged 
state 

 Techniques to address inability to virtualize x86 
  Replace non-virtualizable instructions with easily 

virtualized ones statically (Paravirtualization) 
  Perform Binary Translation (Full Virtualization) 
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I/O Virtualization 

  Issue: lots of I/O devices 
 Problem: Writing device drivers for all I/O device in 

the VMM layer is not a feasible option 
  Insight: Device driver already written for popular 

Operating Systems 
 Solution: Present virtual I/O devices to guest VMs 

and channel I/O requests to a trusted host VM 
running popular OS 
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I/O Virtualization 

24 

VMM + Device Drivers VMM 

Higher performance, but PITA 
to write all the drivers 

Lower performance, but reuses 
drivers guest OS already has. 



Memory Virtualization 

  Traditional way is to have the VMM maintain a shadow of 
the VM’s page table 

  The shadow page table controls which pages of machine 
memory are assigned to a given VM 

  When guest OS updates its page table, VMM updates 
the shadow 
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Another layer of indirection… 



Case Study: VMware ESX Server 

  Type I VMM - Runs on bare hardware 

  Full-virtualized – Legacy OS can run unmodified on top of 
ESX server 

  Fully controls hardware resources and provides good 
performance 
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ESX Server – CPU Virtualization 

 Most user code executes in Direct Execution 
mode; near native performance 

 Uses runtime Binary Translation for x86 
virtualization 
  Privileged mode code is run under control of a Binary 

Translator, which emulates problematic instructions 
  Fast compared to other binary translators as source and 

destination instruction sets are nearly identical 
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ESX Server – Memory Virtualization 
  Maintains shadow page tables with virtual to machine 

address mappings. 
  Shadow page tables are used by the physical processor 
  Guest OS page table: maps virtual addresses to 

“physical” addresses (note quotes) 
  ESX maintains the pmap data structure per VM: maps 

“physical” to machine address mappings 
  Shadow page table holds the combined effects of these 

two map steps 
  ESX can easily remap a machine page when needed 
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ESX Server – I/O Virtualization 

  Has highly optimized storage subsystem for networking 
and storage devices 
  Directly integrated into the VMM 
  Uses device drivers from the Linux kernel to talk directly to the 

device 
  Low performance devices are channeled to special “host” 

VM, which runs a full Linux OS 

30 



Virtualization: Remaining challenges? 

  One big one is “demand estimation” 
  Normally the OS manages resources, 

but in this case, the VMM is 
supposed to mediate between 
multiple entities each running 
different apps/OSs. 

  How to know what they really need? 
  One example:  

Canturk Isci, James Hanson, Ian Whalley, 
Malgorzata Steinder and Jeff Kephart , 
Runtime Demand Estimation for Effective 
Dynamic Resource Management. In IEEE/
IFIP Network Operations and Management 
Symposium (NOMS). Osaka, Japan, Apr. 
2010. 
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 Host1:      ON 
Capacity: 100% 
Used:      
100% 

A Motivating Example:  
Dynamic Resource Management w/o Demand Knowledge 

VM1: (10%,10%) 

VM2: (10%,10%) 

VM3: (10%,10%) 

VM4: (10%,10%) 

VM5: (10%,10%) 

VM6: (10%,10%) 

VM7: (10%,10%) 

VM8: (10%,10%) 

 Host1:      ON 
Capacity: 100% 
Used:       
80% 

 Host2:     OFF 
Capacity:   0% 
Used:        
0% 

 Host3:     OFF 
Capacity:   0% 
Used:        
0% 

VM1: (12.5%,?%) 

VM2: (12.5%,?%) 

VM3: (12.5%,?%) 

VM4: (12.5%,?%) 

VM5: (12.5%,?%) 

VM6: (12.5%,?%) 

VM7: (12.5%,?%) 

VM8: (12.5%,?%) 

 No contention  
Resource contention 
VM: (<usage>,<demand>) 

0.  Initially all VMs: 10% demand 

1.  Demand rises to 25% 
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 Host2:      ON 
Capacity: 100% 
Used:        
0% 

VM1: (12.5%,?%) 

VM2: (12.5%,?%) 

VM3: (12.5%,?%) 

VM4: (12.5%,?%) 

VM5: (12.5%,?%) 

VM6: (12.5%,?%) 

VM7: (12.5%,?%) 

 Host1:      ON 
Capacity: 100% 
Used:     100% 

 Host2:      ON 
Capacity: 100% 
Used:       
50% 

 Host3:     OFF 
Capacity:   0% 
Used:        
0% 

VM8: (12.5%,?%) 

A Motivating Example:  
Dynamic Resource Management w/o Demand Knowledge 

 No contention  
Resource contention 
VM: (<usage>,<demand>) 

0.  Initially all VMs: 10% demand 

1.  Demand rises to 25% 
Host2 powered ON  
Two VMs moved out 
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 Host2:      ON 
Capacity: 100% 
Used:       
75% 

VM1: (16%,?%) 

VM2: (16%,?%) 

VM3: (16%,?%) 

VM4: (16%,?%) 

VM5: (16%,?%) 

VM6: (16%,?%) 

 Host1:      ON 
Capacity: 100% 
Used:     100% 

 Host2:      ON 
Capacity: 100% 
Used:       
50% 

 Host3:     OFF 
Capacity:   0% 
Used:        
0% 

VM8: (25%,25%) 

VM7: (25%,25%) 

A Motivating Example:  
Dynamic Resource Management w/o Demand Knowledge 

 No contention  
Resource contention 
VM: (<usage>,<demand>) 

0.  Initially all VMs: 10% demand 

1.  Demand rises to 25% 
Host2 powered ON  
Two VMs moved out 

2.  VMs on Host1 inflate more 
One more VM moved out 
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 Host2:      ON 
Capacity: 100% 
Used:       
75% 

VM1: (20%,?%) 

VM2: (20%,?%) 

VM3: (20%,?%) 

VM4: (20%,?%) 

 Host1:      ON 
Capacity: 100% 
Used:     100% 

 Host3:     OFF 
Capacity:   0% 
Used:        
0% 

VM8: (25%,25%) 

VM7: (25%,25%) 

VM6: (25%,25%) 

 Host3:      ON 
Capacity: 100% 
Used:        
0% 

VM5: (20%,?%) 

 Host3:      ON 
Capacity: 100% 
Used:       
25% 

A Motivating Example:  
Dynamic Resource Management w/o Demand Knowledge 

 No contention  
Resource contention 
VM: (<usage>,<demand>) 

0.  Initially all VMs: 10% demand 

1.  Demand rises to 25% 
Host2 powered ON  
Two VMs moved out 

2.  VMs on Host1 inflate more 
One more VM moved out 

3.  VMs on Host1 inflate more 
Host3 powered ON 
One more VM moved out 
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 Host3:      ON 
Capacity: 100% 
Used:       
25% 

 Host2:      ON 
Capacity: 100% 
Used:       
75% 

VM1: (25%,25%) 

VM2: (25%,25%) 

VM3: (25%,25%) 

 Host1:      ON 
Capacity: 100% 
Used:     100% 

VM8: (25%,25%) 

VM7: (25%,25%) 

VM6: (25%,25%) 

VM5: (25%,25%) 

 Host3:      ON 
Capacity: 100% 
Used:       
50% 

 Host1:      ON 
Capacity: 100% 
Used:      75% 

VM4: (25%,25%) 

A Motivating Example:  
Dynamic Resource Management w/o Demand Knowledge 

 No contention  
Resource contention 
VM: (<usage>,<demand>) 

0.  Initially all VMs: 10% demand 

1.  Demand rises to 25% 
Host2 powered ON  
Two VMs moved out 

2.  VMs on Host1 inflate more 
One more VM moved out 

3.  VMs on Host1 inflate more 
Host3 powered ON 
One more VM moved out 

4.  VMs on Host1 inflate more 
One more VM moved out 

Not very nimble! 



Nov-14-12 

IBM Research 

Energy Efficient Clouds  |  Canturk Isci  37 

If We Only Knew Actual Demand 

VM1: (12.5%,25%) 
VM2: (12.5%,25%) 
VM3: (12.5%,25%) 
VM4: (12.5%,25%) 
VM5: (12.5%,25%) 
VM6: (12.5%,25%) 
VM7: (12.5%,25%) 
VM8: (12.5%,25%) 

VM1: (25%,25%) 

VM2: (25%,25%) 

VM3: (25%,25%) 

VM6: (25%,25%) 

VM7: (25%,25%) 

VM8: (25%,25%) 

VM4: (25%,25%) 

VM5: (25%,25%) 

 With better demand estimation:  
we could nimbly reach the right  
configuration in one shot! 
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Our Solution: CPU Accounting & Demand Estimation 
  Hypothetical Example:   (t~ hypervisor scheduling quantum) 
 1 Host: 2PCPUs 200% Capacity 
10 VMs: 1VCPU, 80% CPU: [4t Run + 1t Sleep] 

t: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
VM1: U R R R R U R R R R U R R R R U W R R R U R R R 
VM2: U R R R R U R R R R U R R R R U W R R R U R R R 
VM3: R U R R R R U R R R R U R R R R U W R R R U R R 
VM4: R U R R R R U R R R R U R R R R U W R R R U R R 
VM5: R R U R R R R U R R R R U R R R R U W R R R U R 
VM6: R R U R R R R U R R R R U R R R R U W R R R U R 
VM7: R R R U R R R R U R R R R U R R R R U W R R R U 
VM8: R R R U R R R R U R R R R U R R R R U W R R R U 
VM9: R R R R U R R R R U R R R R U R R R R U W R R R 

VM10: R R R R U R R R R U R R R R U R R R R U W R R R 

U: Used | R: Ready | W: Wait 
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Evaluation Case Study 

 Cluster: 

Experiment similar to motivational example 
Pack all VMs on Host1 
Increase load 
Evaluate with and without demand estimation 

CPU 

CPU 

CPU 

CPU 

 2 Hosts 
2 CPU 
200% each 

CPU CPU CPU CPU CPU 

 5VMs, 1CPU, 0-100% each 

VM1: 100%[20mins]  
VM2:  80%[20mins]  
VM3:  60%[20mins]  
VM4:  40%[20mins]  
VM5:  20%[20mins] 

V
M

 
D

em
an

d 

t 

Load Configuration: 
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Dynamic Placement Steps 

Baseline Demand 
Estimation 

One-shot resolution instead of the iterative process! 
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VM1 (100%) 
VM2 (80%) 
VM3 (60%) 
VM4 (40%) 
VM5 (20%) 

Each host: 
200% capacity 

200% 
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Performance: Time to Converge 

Reduce time required to converge to the optimal allocation by 2X! 

Time to converge: ~480s 

Time to converge: ~200s 
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Evaluation with Data Center Loads 

Reduce aggregate performance degradation by 2X across all VMs! 



Summary 

  Virtualization is here: 
  Compatibility and abstraction 
  Server Consolidation 
  Migration and maintenance 

  Interesting design problems: 
  Hardware Support 
  Software design approaches 

  Tons of Policy and measurement issues: 
  Managing performance, power, fairness, … 
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