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Abstraction 

  Computer systems are built 
on levels of abstraction 

  Higher level of abstraction 
hide details at lower levels 



The “Machine” 

  Different perspectives on what 
the Machine is: 

  OS developer 

   Instruction Set Architecture 
 ISA 
 Major division between hardware 

and software I/O devices 
and 

Networking 

System Interconnect 
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The “Machine” 

  Different perspectives on what 
the Machine is: 

  Compiler developer 

   Application Binary Interface 
•  ABI 
•  User ISA + OS calls 
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The “Machine” 

  Different perspectives on what 
the Machine is: 

  Application programmer 

   Application Program Interface 
•  API 
•  User ISA + library calls 
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Advantages of Abstraction & Standard 
Interfaces 
  Major design tasks are decoupled 

  In space and time 
  Different hardware and software                         

development schedules 
  Software can run on any machine supporting a 

compatible interface 

x86 

Linux 

Linux apps 

x86 

Windows 

Windows apps. 



But, where are we now? … 

  Software compiled for one ISA will not run on hardware 
with a different ISA 
  ARM vs x86? 

  Even if ISAs are the same, OSes may differ 
  Windows 8 vs. Linux? 

  Binary may not be optimized for the specific hardware 
platform it runs on 
  Intel Pentium 4 binaries on an AMD Athlon? 

Apple OS X 

Apple SW 

ARM x86 

Windows apps. 

Linux 



Hardware Resources 

  Conventional system software manages hardware 
resources directly 
  An OS manages the physical memory of a specific size 
  I/O devices are managed as physical entities 

  Difficult to share resources except through OS 
  All users of hardware must use the same OS 
  All users are vulnerable to attack from other users sharing 

the resource (via security holes in OS) 



Hardware 
"Machine" 

OS 

Applications 

Virtualizing 
Software 

Guest 

VMM 

Host 

Virtual Machines 

add Virtualizing Software to a Host platform 
and support Guest process or system on a Virtual Machine (VM) 

Example: System Virtual Machine 

Goal: Guest OS & 
Apps unaware of 
Virtualization 
underneath them. 



Virtual Machines: Introduction 

 Have been around since 1960’s on mainframes 
  used for multitasking 
  Good example – VM/370 

 Have resurfaced on commodity platforms 
  Server Consolidation 
  Web Hosting centers 
  High-Performance Compute Clusters 
  Managed desktop / thin-client 
  Software development / kernel hacking 



VMM Functions: Multiplex VMs 



VMM Functions: Suspend a VM 



VMM Functions: Resume (Provision) 



VMM Functions: Migrate 



Goals 
 Manageability 

  Ease maintenance, administration, provisioning, etc. 
 Performance 

  Overhead of virtualization should be small 

 Power Savings 
  Server Consolidation 

  Isolation 
  Activity of one VM should not impact other active VMs 
  Data of one VM is inaccessible by another 

 Scalability 
  Minimize cost per VM 



VMM Types 

For VM approaches you have used, which type are they? 



VMM Challenges 

What seems difficult about building VM approaches? 



Virtual Machine Monitor (VMM) 

  Resides as a layer below the (guest) operating system 

  Presents a hardware interface to a (guest) OS 

  Multiplexes resources between several virtual machines 
(VMs) 

  Performance Isolates VMs from each other 

When/Why/How would all this be useful? 



Virtualization Styles 
  Fully virtualizing VMM 

  Virtual machine looks exactly like some physical machine.  
  (But maybe not the one you’re running on right now.) 
   Run OS or other software unchanged (from the machine the VM mimics) 

  Para- virtualizing VMM 
  Some architecture features are hard to virtualize, so exact copy is too 

difficult (or slow). 
  Instead, punt on a few features. 
  VMM provides idealized view of hardware and then fixes under the 

covers. 
  Since the VMM doesn’t match any real hardware, an OS running on it 

MUST be changed, not legacy. 

If you are an application programmer, how could you 
figure out whether your code is running FV, PV, or non-
Virtualized? 



VMM Implementation 

Should efficiently virtualize 
the hardware 

  Provide illusion of 
multiple machines 

  Retain control of the 
physical machine 

Subsystems 
  Processor Virtualization 
  I/O virtualization 
  Memory Virtualization 
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Processor Virtualization 

Popek and Goldberg (1974) 
  Sensitive instructions: only executed in kernel mode 
  Privileged instructions: trap when run in user mode 
  CPU architecture is virtualizable only if sensitive 

instructions are subset of privileged instructions 

  When guest OS runs a sensitive instruction, must trap to 
VMM so it maintains control 

21 



x86 Processor Virtualization 

  x86 architecture is not fully virtualizable 
  Certain privileged instructions behave differently when 

run in unprivileged mode 
•  POPF instruction that is used to set and clear the 

interrupt-disable flag.  If run in user mode, it has no 
effect: it’s a NO-OP.  

  Certain unprivileged instructions can access privileged 
state 

 Techniques to address inability to virtualize x86 
  Replace non-virtualizable instructions with easily 

virtualized ones statically (Paravirtualization) 
  Perform Binary Translation (Full Virtualization) 
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I/O Virtualization 

  Issue: lots of I/O devices 
 Problem: Writing device drivers for all I/O device in 

the VMM layer is not a feasible option 
  Insight: Device driver already written for popular 

Operating Systems 
 Solution: Present virtual I/O devices to guest VMs 

and channel I/O requests to a trusted host VM 
running popular OS 
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I/O Virtualization 

24 

VMM + Device Drivers VMM 

Higher performance, but PITA 
to write all the drivers 

Lower performance, but reuses 
drivers guest OS already has. 



Memory Virtualization 

  Traditional way is to have the VMM maintain a shadow of 
the VM’s page table 

  The shadow page table controls which pages of machine 
memory are assigned to a given VM 

  When guest OS updates its page table, VMM updates 
the shadow 
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Another layer of indirection… 



Case Study: VMware ESX Server 

  Type I VMM - Runs on bare hardware 

  Full-virtualized – Legacy OS can run unmodified on top of 
ESX server 

  Fully controls hardware resources and provides good 
performance 
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ESX Server – CPU Virtualization 

 Most user code executes in Direct Execution 
mode; near native performance 

 Uses runtime Binary Translation for x86 
virtualization 
  Privileged mode code is run under control of a Binary 

Translator, which emulates problematic instructions 
  Fast compared to other binary translators as source and 

destination instruction sets are nearly identical 
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ESX Server – Memory Virtualization 
  Maintains shadow page tables with virtual to machine 

address mappings. 
  Shadow page tables are used by the physical processor 
  Guest OS page table: maps virtual addresses to 

“physical” addresses (note quotes) 
  ESX maintains the pmap data structure per VM: maps 

“physical” to machine address mappings 
  Shadow page table holds the combined effects of these 

two map steps 
  ESX can easily remap a machine page when needed 
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ESX Server – I/O Virtualization 

  Has highly optimized storage subsystem for networking 
and storage devices 
  Directly integrated into the VMM 
  Uses device drivers from the Linux kernel to talk directly to the 

device 
  Low performance devices are channeled to special “host” 

VM, which runs a full Linux OS 
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Virtualization: Remaining challenges? 

  One big one is “demand estimation” 
  Normally the OS manages resources, 

but in this case, the VMM is 
supposed to mediate between 
multiple entities each running 
different apps/OSs. 

  How to know what they really need? 
  One example:  

Canturk Isci, James Hanson, Ian Whalley, 
Malgorzata Steinder and Jeff Kephart , 
Runtime Demand Estimation for Effective 
Dynamic Resource Management. In IEEE/
IFIP Network Operations and Management 
Symposium (NOMS). Osaka, Japan, Apr. 
2010. 
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 Host1:      ON 
Capacity: 100% 
Used:      
100% 

A Motivating Example:  
Dynamic Resource Management w/o Demand Knowledge 

VM1: (10%,10%) 

VM2: (10%,10%) 

VM3: (10%,10%) 

VM4: (10%,10%) 

VM5: (10%,10%) 

VM6: (10%,10%) 

VM7: (10%,10%) 

VM8: (10%,10%) 

 Host1:      ON 
Capacity: 100% 
Used:       
80% 

 Host2:     OFF 
Capacity:   0% 
Used:        
0% 

 Host3:     OFF 
Capacity:   0% 
Used:        
0% 

VM1: (12.5%,?%) 

VM2: (12.5%,?%) 

VM3: (12.5%,?%) 

VM4: (12.5%,?%) 

VM5: (12.5%,?%) 

VM6: (12.5%,?%) 

VM7: (12.5%,?%) 

VM8: (12.5%,?%) 

 No contention  
Resource contention 
VM: (<usage>,<demand>) 

0.  Initially all VMs: 10% demand 

1.  Demand rises to 25% 
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 Host2:      ON 
Capacity: 100% 
Used:        
0% 

VM1: (12.5%,?%) 

VM2: (12.5%,?%) 

VM3: (12.5%,?%) 

VM4: (12.5%,?%) 

VM5: (12.5%,?%) 

VM6: (12.5%,?%) 

VM7: (12.5%,?%) 

 Host1:      ON 
Capacity: 100% 
Used:     100% 

 Host2:      ON 
Capacity: 100% 
Used:       
50% 

 Host3:     OFF 
Capacity:   0% 
Used:        
0% 

VM8: (12.5%,?%) 

A Motivating Example:  
Dynamic Resource Management w/o Demand Knowledge 

 No contention  
Resource contention 
VM: (<usage>,<demand>) 

0.  Initially all VMs: 10% demand 

1.  Demand rises to 25% 
Host2 powered ON  
Two VMs moved out 
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 Host2:      ON 
Capacity: 100% 
Used:       
75% 

VM1: (16%,?%) 

VM2: (16%,?%) 

VM3: (16%,?%) 

VM4: (16%,?%) 

VM5: (16%,?%) 

VM6: (16%,?%) 

 Host1:      ON 
Capacity: 100% 
Used:     100% 

 Host2:      ON 
Capacity: 100% 
Used:       
50% 

 Host3:     OFF 
Capacity:   0% 
Used:        
0% 

VM8: (25%,25%) 

VM7: (25%,25%) 

A Motivating Example:  
Dynamic Resource Management w/o Demand Knowledge 

 No contention  
Resource contention 
VM: (<usage>,<demand>) 

0.  Initially all VMs: 10% demand 

1.  Demand rises to 25% 
Host2 powered ON  
Two VMs moved out 

2.  VMs on Host1 inflate more 
One more VM moved out 
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 Host2:      ON 
Capacity: 100% 
Used:       
75% 

VM1: (20%,?%) 

VM2: (20%,?%) 

VM3: (20%,?%) 

VM4: (20%,?%) 

 Host1:      ON 
Capacity: 100% 
Used:     100% 

 Host3:     OFF 
Capacity:   0% 
Used:        
0% 

VM8: (25%,25%) 

VM7: (25%,25%) 

VM6: (25%,25%) 

 Host3:      ON 
Capacity: 100% 
Used:        
0% 

VM5: (20%,?%) 

 Host3:      ON 
Capacity: 100% 
Used:       
25% 

A Motivating Example:  
Dynamic Resource Management w/o Demand Knowledge 

 No contention  
Resource contention 
VM: (<usage>,<demand>) 

0.  Initially all VMs: 10% demand 

1.  Demand rises to 25% 
Host2 powered ON  
Two VMs moved out 

2.  VMs on Host1 inflate more 
One more VM moved out 

3.  VMs on Host1 inflate more 
Host3 powered ON 
One more VM moved out 
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 Host3:      ON 
Capacity: 100% 
Used:       
25% 

 Host2:      ON 
Capacity: 100% 
Used:       
75% 

VM1: (25%,25%) 

VM2: (25%,25%) 

VM3: (25%,25%) 

 Host1:      ON 
Capacity: 100% 
Used:     100% 

VM8: (25%,25%) 

VM7: (25%,25%) 

VM6: (25%,25%) 

VM5: (25%,25%) 

 Host3:      ON 
Capacity: 100% 
Used:       
50% 

 Host1:      ON 
Capacity: 100% 
Used:      75% 

VM4: (25%,25%) 

A Motivating Example:  
Dynamic Resource Management w/o Demand Knowledge 

 No contention  
Resource contention 
VM: (<usage>,<demand>) 

0.  Initially all VMs: 10% demand 

1.  Demand rises to 25% 
Host2 powered ON  
Two VMs moved out 

2.  VMs on Host1 inflate more 
One more VM moved out 

3.  VMs on Host1 inflate more 
Host3 powered ON 
One more VM moved out 

4.  VMs on Host1 inflate more 
One more VM moved out 

Not very nimble! 
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If We Only Knew Actual Demand 

VM1: (12.5%,25%) 
VM2: (12.5%,25%) 
VM3: (12.5%,25%) 
VM4: (12.5%,25%) 
VM5: (12.5%,25%) 
VM6: (12.5%,25%) 
VM7: (12.5%,25%) 
VM8: (12.5%,25%) 

VM1: (25%,25%) 

VM2: (25%,25%) 

VM3: (25%,25%) 

VM6: (25%,25%) 

VM7: (25%,25%) 

VM8: (25%,25%) 

VM4: (25%,25%) 

VM5: (25%,25%) 

 With better demand estimation:  
we could nimbly reach the right  
configuration in one shot! 
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Our Solution: CPU Accounting & Demand Estimation 
  Hypothetical Example:   (t~ hypervisor scheduling quantum) 
 1 Host: 2PCPUs 200% Capacity 
10 VMs: 1VCPU, 80% CPU: [4t Run + 1t Sleep] 

t: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
VM1: U R R R R U R R R R U R R R R U W R R R U R R R 
VM2: U R R R R U R R R R U R R R R U W R R R U R R R 
VM3: R U R R R R U R R R R U R R R R U W R R R U R R 
VM4: R U R R R R U R R R R U R R R R U W R R R U R R 
VM5: R R U R R R R U R R R R U R R R R U W R R R U R 
VM6: R R U R R R R U R R R R U R R R R U W R R R U R 
VM7: R R R U R R R R U R R R R U R R R R U W R R R U 
VM8: R R R U R R R R U R R R R U R R R R U W R R R U 
VM9: R R R R U R R R R U R R R R U R R R R U W R R R 

VM10: R R R R U R R R R U R R R R U R R R R U W R R R 

U: Used | R: Ready | W: Wait 
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Evaluation Case Study 

 Cluster: 

Experiment similar to motivational example 
Pack all VMs on Host1 
Increase load 
Evaluate with and without demand estimation 

CPU 

CPU 

CPU 

CPU 

 2 Hosts 
2 CPU 
200% each 

CPU CPU CPU CPU CPU 

 5VMs, 1CPU, 0-100% each 

VM1: 100%[20mins]  
VM2:  80%[20mins]  
VM3:  60%[20mins]  
VM4:  40%[20mins]  
VM5:  20%[20mins] 

V
M

 
D

em
an

d 

t 

Load Configuration: 
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Dynamic Placement Steps 

Baseline Demand 
Estimation 

One-shot resolution instead of the iterative process! 
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VM1 (100%) 
VM2 (80%) 
VM3 (60%) 
VM4 (40%) 
VM5 (20%) 

Each host: 
200% capacity 

200% 
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Performance: Time to Converge 

Reduce time required to converge to the optimal allocation by 2X! 

Time to converge: ~480s 

Time to converge: ~200s 
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Evaluation with Data Center Loads 

Reduce aggregate performance degradation by 2X across all VMs! 



Summary 

  Virtualization is here: 
  Compatibility and abstraction 
  Server Consolidation 
  Migration and maintenance 

  Interesting design problems: 
  Hardware Support 
  Software design approaches 

  Tons of Policy and measurement issues: 
  Managing performance, power, fairness, … 
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