
COS 318: Operating Systems

Message Passing

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Midterm Results

  Average: 28.58
  Median: 28.5
  See suggested solutions online

2

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89

Midterm Grading

  Problem 1 (Aaron)
  Main issue: did not realize that monitors can cause deadlocks

  Problem 2 (Yida)
  Main issue: definition of turnaround time

  Problem 3 (Scott)
  Main issue: not thinking about device driver

  Problem 4 (Yida & Aaron)
  Main issue: making multi multilock atomic can avoid deadlock

but inefficient
  Problem 5 (Me)

  Main issue: not knowing how to program with Mesa-style
monitor

  Look for graders outside the classroom
3

4

Revisit Idiom of Mesa-style Monitor

Acquire(mutex);
while (“condition not true”)
 wait(mutex, cond);
...
Release(mutex);

Acquire(mutex);
...

Signal(cond);
/* or Broadcast(cond);

Release(mutex);

5

Today’s Topics

  Message passing
  Implementation issues

6

Big Picture

Process

Sender

Process

Receiver

7

Send and Receive Primitives

send(dest,
type,
msg)

Sender

recv(src,
type,
msg)

Receiver

pid, file, port,… pid, file, port, any,…

buffer, n-bytes
buffer, ?-bytes

msg type expected
msg type

Many ways to design the message passing API

8

Synchronous Message Passing

  Move data between processes
  Sender: when data is ready, send it to the receiver process
  Receiver: when the data has arrived and when the receive process is

ready to take the data, move the data

  Synchronization
  Sender: signal the receiver process that a particular event happens
  Receiver: block until the event has happened

…

… …

…

Sender Receiver

Send(R, buf, n);

Recv(S, &buf, &n);

9

Example: Producer-Consumer

  Does this work?
  Would it work with multiple producers and 1 consumer?
  Would it work with 1 producer and multiple consumers?
  What about multiple producers and multiple consumers?

Producer(){
 ...
 while (1) {
 produce item;
 recv(Consumer, &credit);
 send(Consumer, item);
 }
}

Consumer(){
 ...
 for (i=0; i<N; i++)
 send(Producer, credit);
 while (1) {
 recv(Producer, &item);
 send(Producer, credit);
 consume item;
 }
}

10

Implementation Issues

 Buffering messages
 Direct vs. indirect
 Unidirectional vs.

bidirectional
 Asynchronous vs.

synchronous
 Event handler vs. receive
 Handle exceptions

…

…

11

Buffering Messages

 No buffering
  Sender must wait until the

receiver receives the message
  Rendezvous on each message

 Bounded buffer
  Finite size
  Sender blocks on buffer full
  Use mesa-monitor to solve the

problem
 Unbounded buffer

  “Infinite” size
  Sender never blocks

buffer

12

Direct Communication

  A single buffer at the receiver
  More than one process may

send messages to the receiver
  To receive from a specific

sender, it requires searching
through the whole buffer

  A buffer at each sender
  A sender may send messages

to multiple receivers
  To get a message, it also

requires searching through the
whole buffer

…

…

13

Indirect Communication

  Use mailbox as the abstraction
  Allow many-to-many communication
  Require open/close a mailbox

  Buffering
  A buffer, its mutex and condition

variables should be at the mailbox

  Message size
  Not necessarily. One can break a

large message into packets

  Mailbox vs. pipe
  A mailbox allows many to many

communication
  A pipe implies one sender and one

receiver

mbox

pipe

14

Synchronous vs. Asynchronous: Send

 Synchronous
  Block on if resource is busy
  Initiate data transfer
  Block until data is out of its

source memory
 Asynchronous

  Block if resource is busy
  Initiate data transfer and

return
  Completion

•  Require applications to
check status

•  Notify or signal the
application

send(dest, type, msg)

msg transfer resource

status = async_send(dest, type, msg)
…
if !send_complete(status)
 wait for completion;
…
use msg data structure;
…

15

Synchronous vs. Asynchronous: Receive

 Synchronous
  Return data if there is a

message

 Asynchronous
  Return data if there is a

message
  Return status if there is no

message (probe)

recv(src, type, msg)

msg transfer resource

status = async_recv(src, type, msg);
if (status == SUCCESS)
 consume msg;

while (probe(src) != HaveMSG)
 wait for msg arrival
recv(src, type, msg);
consume msg;

16

Event Handler vs. Receive

  hrecv(src, type, msg, func)
  msg is an arg of func
  Execute “func” on a message

arrival

  Which one is more powerful?
  Recv with a thread can emulate a

Handler
  Handler can be used to emulate

recv by using Monitor

  Pros and Cons

void func(char * msg) {
 …
}

…
hrecv(src, type, msg, func)
…

while(1) {
 recv(src,type, msg);
 func(msg);
}

program
Create a thread

…

17

Example: Keyboard Input

 How do you implement keyboard input?
  Need an interrupt handler
  Generate a mbox message from the interrupt handler

 Suppose a keyboard device thread converts input
characters into an mbox message
  How would you synchronize between the keyboard interrupt

handler and device thread?
  How can a device thread convert input into mbox messages?

mbox

V(s);
…

while (1) {
 P(s);
 Acquire(m);
 convert …
 Release(m);
};

Interrupt
handler

Device
thread

Process

18

Exception: Process Termination

 R waits for a message from S,
but S has terminated
  R may be blocked forever

 S sends a message to R,
but R has terminated
  S has no buffer and will be

blocked forever

S R

S R

19

Exception: Message Loss

 Use ack and timeout to detect
and retransmit a lost message
  Receiver sends an ack for each msg
  Sender blocks until an ack message

is back or timeout
status = send(dest, msg, timeout);

  If timeout happens and no ack, then
retransmit the message

  Issues
  Duplicates
  Losing ack messages

S R
send
ack

20

Exception: Message Loss, cont’d

  Retransmission must handle
  Duplicate messages on receiver side
  Out-of-sequence ack messages on

sender side
  Retransmission

  Use sequence number for each
message to identify duplicates

  Remove duplicates on receiver side
  Sender retransmits on an out-of-

sequence ack
  Reduce ack messages

  Bundle ack messages
  Receiver sends noack messages:

can be complex
  Piggy-back acks in send messages

S R

send1
ack1

send2
ack2

21

Exception: Message Corruption

  Detection
  Compute a checksum over the entire message and send

the checksum (e.g. CRC code) as part of the message
  Recompute a checksum on receive and compare with the

checksum in the message
  Correction

  Trigger retransmission
  Use correction codes to recover

Data

Compute checksum

22

Example: Sockets API
  Abstraction for TCP and UDP
  Addressing

  IP address and port number
(216 ports available for users)

  Create and close a socket
  sockid = socket(af, type,

protocol);
  Sockerr = close(sockid);

  Bind a socket to a local address
  sockerr = bind(sockid, localaddr,

addrlength);

  Negotiate the connection
  listen(sockid, length);
  accept(sockid, addr, length);

  Connect a socket to destimation
  connect(sockid, destaddr,

addrlength);

socket socket

bind

listen

accept

read

connect

write

write read

Server Client

23

Summary

  Message passing
  Move data between processes
  Implicit synchronization
  API design is important

  Implementation issues
  Synchronous method is most common
  Asynchronous method provides overlapping but requires

careful design considerations
  Indirection makes implementation flexible
  Exception needs to be carefully handled

