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Midterm Grading

Problem 1 (Aaron)
e Main issue: did not realize that monitors can cause deadlocks

Problem 2 (Yida)

e Main issue: definition of turnaround time

Problem 3 (Scott)

e Main issue: not thinking about device driver

Problem 4 (Yida & Aaron)

e Main issue: making multi multilock atomic can avoid deadlock
but inefficient

Problem 5 (Me)

e Main issue: not knowing how to program with Mesa-style
monitor

Look for graders outside the classroom




Revisit Idiom of Mesa-style Monitor

Acquire (mutex) ;

while (“condition not true”)

Acquire (mutex) ;

wait (mutex, cond); Signal (cond) ;

/* or Broadcast (cond) ;

Release (mutex) ; Release (mutex) ;




Today's Topics

Message passing
Implementation issues




Big Picture

Sender

Receiver



Send and Receive Primitives

Sender

msg type

Recerver

pid, file, port,...

send(dest,

I/

type,
msg)

buffer, n-bytes

Z

o~

pid, file, port, any,...

recv(src,
type — expected
’ msg type
msgQ)

buffer, ?-bytes

Many ways to design the message passing API




Synchronous Message Passing

Sender Receiver

Send( R, buf, n ); —

¢ Move data between processes
e Sender: when data is ready, send it to the receiver process

e Receiver: when the data has arrived and when the receive process is
ready to take the data, move the data

¢ Synchronization
e Sender: signal the receiver process that a particular event happens
e Receiver: block until the event has happened




Example: Producer-Consumer

Producer () { Consumer () {
while (1) { for (i=0; i<N; i++)
produce item; | — send (Producer, credit);
recv (Consumer, &credit);( while (1) {
send (Consumer, item); R recv (Producer, é&item);
} T~ send (Producer, credit);
} consume item;
}
}

Does this work?
Would it work with multiple producers and 1 consumer?

Would it work with 1 producer and multiple consumers?
What about multiple producers and multiple consumers?




Implementation Issues

Buffering messages
Direct vs. indirect

Unidirectional vs.
bidirectional

Asynchronous vs.
synchronous

Event handler vs. receive
Handle exceptions

/\
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Buffering Messages

No buffering

e Sender must wait until the
receiver receives the message

e Rendezvous on each message

Bounded buffer
e Finite size
e Sender blocks on buffer full

e Use mesa-monitor to solve the
problem

Unbounded buffer
e “Infinite” size
e Sender never blocks

f—

r
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Direct Communication

A single buffer at the receiver

e More than one process may
send messages to the receiver

e To receive from a specific
sender, it requires searching
through the whole buffer

A buffer at each sender

e A sender may send messages
to multiple receivers

e [0 get a message, it also
requires searching through the
whole buffer
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Indirect Communication

Use mailbox as the abstraction
e Allow many-to-many communication
e Require open/close a mailbox

Buffering
e A buffer, its mutex and condition
variables should be at the mailbox
Message size
e Not necessarily. One can break a
large message into packets
Mailbox vs. pipe

e A mailbox allows many to many
communication

e A pipe implies one sender and one
receiver

mbox

pipe
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Synchronous vs. Asynchronous: Send

Synchronous
e Block on if resource is busy send( dest, type, msg)
e Initiate data transfer /—)
e Block until data is out of its msg transfer resource
source memory
Asynchronous

e Block if resource is busy
e Initiate data transfer and = 4t ,s = async_send( dest, type, msg )

return
e Completion if Isend_complete( status )
* Require applications to wait for completion;
check status
 Notify or signal the use msg data structure;

application
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Synchronous vs. Asynchronous: Receive

®
Synchronous
e Return data if there is a msg transfer resource |-
message
> msrc, type, msg )
Asynchronous status = async_recv( src, type, msg );

if ( status == SUCCESS )
consume msg;

e Return data if there is a

message
e Return status if there is no  while ( probe(src) != HaveMSG )
message (probe) wait for msg arrival

recv( src, type, msg );
consume msg;
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Event Handler vs. Recelve

hrecv( src, type, msg, func )
e msg is an arg of func

e Execute “func” on a message
arrival }

Which one is more powerful?

e Recv with a thread can emulate a
Handler

e Handler can be used to emulate

void func( char * msg ) {

hrecv( src, type, msg, func)

recv by using Monitor
program
Pros and Cons Create athread |

ittt

while(1) {

recv(src,type, msq);
func(msg);

}
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Example: Keyboard Input

How do you implement keyboard input?

e Need an interrupt handler
e Generate a mbox message from the interrupt handler

Suppose a keyboard device thread converts input

characters into an mbox message

e How would you synchronize between the keyboard interrupt
handler and device thread?
e How can a device thread convert input into mbox messages?

while (1) {
P(s);
Acquire (m) ;
convert ..
Release (m) ;

)5 mbox

Interrupt Device Process

@ handler thread
AN 17

TR




Exception: Process Termination

R waits for a message from S,
but S has terminated
e R may be blocked forever

S sends a message to R,
but R has terminated

e S has no buffer and will be S
blocked forever
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Exception: Message Loss

Use ack and timeout to detect
and retransmit a lost message
e Receiver sends an ack for each msg

e Sender blocks until an ack message
IS back or timeout
status = send( dest, msg, timeout );

e |f timeout happens and no ack, then
retransmit the message

Issues

e Duplicates
e Losing ack messages

send

ack
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Exception: Message Loss, cont'd

Retransmission must handle
e Duplicate messages on receiver side

e Out-of-sequence ack messages on
sender side

Retransmission

e Use sequence number for each
message to identify duplicates S

e Remove duplicates on receiver side
e Sender retransmits on an out-of-

send,

ack,

send, | R

ack,

sequence ack

Reduce ack messages
e Bundle ack messages

e Receiver sends noack messages:
can be complex

e Piggy-back acks in send messages
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Exception: Message Corruption

Data /
~_ S— B
Compute checksum

Detection

e Compute a checksum over the entire message and send
the checksum (e.g. CRC code) as part of the message

e Recompute a checksum on receive and compare with the
checksum in the message

Correction

e Trigger retransmission
e Use correction codes to recover

)c
IGET)

TR



Example: Sockets API

Abstraction for TCP and UDP
Addressing

e |P address and port number
(2% ports available for users)

Create and close a socket

e sockid = socket(af, type,
protocol) ;

® Sockerr = close(sockid);

Bind a socket to a local address

® sockerr = bind(sockid, localaddr,
addrlength) ;

Negotiate the connection

e listen(sockid, length);

® accept(sockid, addr, 1length);
Connect a socket to destimation

® connect (sockid, destaddr,
addrlength) ;

Server  Client
socket socket
bfnd
Iis’;en
acéept
) conhect
re‘ad ) w;ite
w;ite re‘ad

!

!
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Summary

Message passing

e Move data between processes
e Implicit synchronization

e API design is important

Implementation issues
e Synchronous method is most common

e Asynchronous method provides overlapping but requires
careful design considerations

e Indirection makes implementation flexible
e EXxception needs to be carefully handled

)c
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