COS 318: Operating Systems

Message Passing

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Midterm Results

40
35
30
25
20
15

10

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89

Average: 28.58
Median: 28.5
See suggested solutions online

Midterm Grading

Problem 1 (Aaron)
e Main issue: did not realize that monitors can cause deadlocks

Problem 2 (Yida)

e Main issue: definition of turnaround time

Problem 3 (Scott)

e Main issue: not thinking about device driver

Problem 4 (Yida & Aaron)

e Main issue: making multi multilock atomic can avoid deadlock
but inefficient

Problem 5 (Me)

e Main issue: not knowing how to program with Mesa-style
monitor

Look for graders outside the classroom

Revisit Idiom of Mesa-style Monitor

Acquire (mutex) ;

while (“condition not true”)

Acquire (mutex) ;

wait (mutex, cond); Signal (cond) ;

/* or Broadcast (cond) ;

Release (mutex) ; Release (mutex) ;

Today's Topics

Message passing
Implementation issues

Big Picture

Sender

Receiver

Send and Receive Primitives

Sender

msg type

Recerver

pid, file, port,...

send(dest,

I/

type,
msg)

buffer, n-bytes

Z

o~

pid, file, port, any,...

recv(src,
type — expected
’ msg type
msgQ)

buffer, ?-bytes

Many ways to design the message passing API

Synchronous Message Passing

Sender Receiver

Send(R, buf, n); —

¢ Move data between processes
e Sender: when data is ready, send it to the receiver process

e Receiver: when the data has arrived and when the receive process is
ready to take the data, move the data

¢ Synchronization
e Sender: signal the receiver process that a particular event happens
e Receiver: block until the event has happened

Example: Producer-Consumer

Producer () { Consumer () {
while (1) { for (i=0; i<N; i++)
produce item; | — send (Producer, credit);
recv (Consumer, &credit);(while (1) {
send (Consumer, item); R recv (Producer, é&item);
} T~ send (Producer, credit);
} consume item;
}
}

Does this work?
Would it work with multiple producers and 1 consumer?

Would it work with 1 producer and multiple consumers?
What about multiple producers and multiple consumers?

Implementation Issues

Buffering messages
Direct vs. indirect

Unidirectional vs.
bidirectional

Asynchronous vs.
synchronous

Event handler vs. receive
Handle exceptions

/\

10

Buffering Messages

No buffering

e Sender must wait until the
receiver receives the message

e Rendezvous on each message

Bounded buffer
e Finite size
e Sender blocks on buffer full

e Use mesa-monitor to solve the
problem

Unbounded buffer
e “Infinite” size
e Sender never blocks

f—

r

11

Direct Communication

A single buffer at the receiver

e More than one process may
send messages to the receiver

e To receive from a specific
sender, it requires searching
through the whole buffer

A buffer at each sender

e A sender may send messages
to multiple receivers

e [0 get a message, it also
requires searching through the
whole buffer

12

Indirect Communication

Use mailbox as the abstraction
e Allow many-to-many communication
e Require open/close a mailbox

Buffering
e A buffer, its mutex and condition
variables should be at the mailbox
Message size
e Not necessarily. One can break a
large message into packets
Mailbox vs. pipe

e A mailbox allows many to many
communication

e A pipe implies one sender and one
receiver

mbox

pipe

13

Synchronous vs. Asynchronous: Send

Synchronous
e Block on if resource is busy send(dest, type, msg)
e Initiate data transfer /—)
e Block until data is out of its msg transfer resource
source memory
Asynchronous

e Block if resource is busy
e Initiate data transfer and = 4t ,s = async_send(dest, type, msg)

return
e Completion if Isend_complete(status)
* Require applications to wait for completion;
check status
 Notify or signal the use msg data structure;

application

14

Synchronous vs. Asynchronous: Receive

®
Synchronous
e Return data if there is a msg transfer resource |-
message
> msrc, type, msg)
Asynchronous status = async_recv(src, type, msg);

if (status == SUCCESS)
consume msg;

e Return data if there is a

message
e Return status if there is no while (probe(src) != HaveMSG)
message (probe) wait for msg arrival

recv(src, type, msg);
consume msg;

15

Event Handler vs. Recelve

hrecv(src, type, msg, func)
e msg is an arg of func

e Execute “func” on a message
arrival }

Which one is more powerful?

e Recv with a thread can emulate a
Handler

e Handler can be used to emulate

void func(char * msg) {

hrecv(src, type, msg, func)

recv by using Monitor
program
Pros and Cons Create athread |

ittt

while(1) {

recv(src,type, msq);
func(msg);

}

16

Example: Keyboard Input

How do you implement keyboard input?

e Need an interrupt handler
e Generate a mbox message from the interrupt handler

Suppose a keyboard device thread converts input

characters into an mbox message

e How would you synchronize between the keyboard interrupt
handler and device thread?
e How can a device thread convert input into mbox messages?

while (1) {
P(s);
Acquire (m) ;
convert ..
Release (m) ;

)5 mbox

Interrupt Device Process

@ handler thread
AN 17

TR

Exception: Process Termination

R waits for a message from S,
but S has terminated
e R may be blocked forever

S sends a message to R,
but R has terminated

e S has no buffer and will be S
blocked forever

18

Exception: Message Loss

Use ack and timeout to detect
and retransmit a lost message
e Receiver sends an ack for each msg

e Sender blocks until an ack message
IS back or timeout
status = send(dest, msg, timeout);

e |f timeout happens and no ack, then
retransmit the message

Issues

e Duplicates
e Losing ack messages

send

ack

19

Exception: Message Loss, cont'd

Retransmission must handle
e Duplicate messages on receiver side

e Out-of-sequence ack messages on
sender side

Retransmission

e Use sequence number for each
message to identify duplicates S

e Remove duplicates on receiver side
e Sender retransmits on an out-of-

send,

ack,

send, | R

ack,

sequence ack

Reduce ack messages
e Bundle ack messages

e Receiver sends noack messages:
can be complex

e Piggy-back acks in send messages

20

Exception: Message Corruption

Data /
~_ S— B
Compute checksum

Detection

e Compute a checksum over the entire message and send
the checksum (e.g. CRC code) as part of the message

e Recompute a checksum on receive and compare with the
checksum in the message

Correction

e Trigger retransmission
e Use correction codes to recover

)c
IGET)

TR

Example: Sockets API

Abstraction for TCP and UDP
Addressing

e |P address and port number
(2% ports available for users)

Create and close a socket

e sockid = socket(af, type,
protocol) ;

® Sockerr = close(sockid);

Bind a socket to a local address

® sockerr = bind(sockid, localaddr,
addrlength) ;

Negotiate the connection

e listen(sockid, length);

® accept(sockid, addr, 1length);
Connect a socket to destimation

® connect (sockid, destaddr,
addrlength) ;

Server Client
socket socket
bfnd
Iis’;en
acéept
) conhect
re‘ad) w;ite
w;ite re‘ad

!

!

22

Summary

Message passing

e Move data between processes
e Implicit synchronization

e API design is important

Implementation issues
e Synchronous method is most common

e Asynchronous method provides overlapping but requires
careful design considerations

e Indirection makes implementation flexible
e EXxception needs to be carefully handled

)c
IGET)

TR

23

