
COS 318: Operating Systems

File Performance and Reliability

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Topics

  File buffer cache
  Disk failure and file recovery tools
  Consistent updates
  Transactions and logging

3

File Buffer Cache for Performance

  Cache files in main memory
  Check the buffer cache first
  Hit will read from or write to the

buffer cache
  Miss will read from the disk to

the buffer cache
  Usual questions

  What to cache?
  How to size the cache?
  What to prefetch?
  How and what to replace?
  Which write policies?

User buffer User

Buffer
cache

Disk

Kernel

4

What to Cache?

  Things to consider
  i-nodes and indirect blocks of directories
  Directory files
  I-nodes and indirect blocks of files
  Files

  Strategies
  Cache i-nodes and indirect blocks if they are in use?
  Cache only the i-nodes and indirect blocks of the current

directory?
  Cache an entire file vs. referenced blocks of files

5

How to Size the Cache?

  Partitions
  Buffer cache vs. VM vs. the rest of the system

  Early systems use fixed-size buffer cache
  It does not adapt to workloads

  Later systems use variable size cache
  But, large files are common, how do we make adjustment?

  Solutions
  Let users make decisions
  Working set idea with dynamic adjustments within thresholds

Buffer cache
(90MB)

VM
(110MB)

Buffer cache
(120MB)

VM
(80MB)

6

Multiple User Processes

 Typical architecture
  Shared buffer cache in kernel
  Global LRU as default

 Other ideas?
  Working set idea

 Questions
  Each process use its own

replacement strategy?
  Move the buffer cache to the

user level?

User
process

User
process

User
process ...

Buffer cache

7

What to Prefetch?

  Optimal
  The blocks are fetched in just enough time to use them
  But, …

  The good news is that files have locality
  Temporal locality
  Spatial locality

  Common strategies
  Prefetch next k blocks together (typically > 64KB)
  Some discard unreferenced blocks
  Cluster blocks (to the same cylinder group and neighborhood)

make prefetching efficient, directory and i-nodes if possible
  Advanced strategy

  Prefetch all small files of a directory

8

How and What to Replace?

  Page replacement theory
  Use past to predict future
  LRU is good

  Buffer cache with LRU
replacement mechanism
  If b is in buffer cache, move

it to front and return b
  Otherwise, replace the tail

block, get b from disk, insert
b to the front

  Use double linked list with a
hash table

  Questions
  Why a hash table?
  What if file >> the cache?

…

LRU
(front)

…

Hash
table

9

Which Write Policies?

  Write through
  Whenever modify cached

block, write block to disk
  Cache is always consistent
  Simple, but cause more I/Os

  Write back
  When modifying a block, mark

it as dirty & write to disk later
  Fast writes, absorbs writes,

and enables batching
  So, what’s the problem?

User buffer User

Buffer
cache

Disk

Kernel

10

Write Back Complications

  Fundamental tension
  On crash, all modified data in cache is lost.
  The longer you postpone write backs, the faster you are and

the worst the damage is
  When to write back

  When a block is evicted
  When a file is closed
  On an explicit flush
  When a time interval elapses (30 seconds in Unix)

  Issues
  These write back options have no guarantees
  A solution is consistent updates (later)

11

File Recovery Tools

  Physical backup (dump) and recovery
  Dump disk blocks by blocks to a backup system
  Backup only changed blocks since the last backup

as an incremental
  Recovery tool is made accordingly

  Logical backup (dump) and recovery
  Traverse the logical structure from the root
  Selectively dump what you want to backup
  Verify logical structures as you backup
  Recovery tool selectively move files back

  Consistency check (e.g. fsck)
  Start from the root i-node
  Traverse the whole tree and mark reachable files
  Verify the logical structure
  Figure out what blocks are free

/

u

cos318

man

12

Recovery from Disk Block Failures

  Boot block
  Create a utility to replace the boot block
  Use a flash memory to duplicate the

boot block and kernel

  Super block
  If there is a duplicate, remake the file

system
  Otherwise, what would you do?

  Free block data structure
  Search all reachable files from the root
  Unreachable blocks are free

  i-node blocks
  How to recover?

  Indirect or data blocks
  How to recover?

bitmap

i-node

Indirect Indirect

Data Data Data

13

Persistency and Crashes

  File system promise: Persistency
  File system will hold a file until its owner

explicitly deletes it
  Backups can recover your file even

beyond the deletion point
  Why is this hard?

  A crash will destroy memory content
  Cache more ⇒ better performance
  Cache more ⇒ lose more on a crash
  A file operation often requires modifying

multiple blocks, but the system can only
atomically modify one at a time

  Systems can crash anytime

Memory

?

14

What Is A Crash?

  Crash is like a context switch
  Think about a file system as a

thread before the context switch
and another after the context
switch

  Two threads read or write same
shared state?

  Crash is like time travel
  Current volatile state lost; suddenly

go back to old state
  Example: move a file

•  Place it in a directory
•  Delete it from old
•  Crash happens and both

directories have problems

Before Crash After

Crash

Time

15

Approaches

  Throw everything away and start over
  Done for most things (e.g., make again)
  Not what you want to happen to your email

  Reconstruction
  Figure out where you are and make the file system consistent

and go from there
  Try to fix things after a crash (“fsck”)

  Make consistent updates
  Either new data or old data, but not garbage data

  Make multiple updates appear atomic
  Build arbitrary sized atomic units from smaller atomic ones
  Similar to how we built critical sections from locks, and locks

from atomic instructions

16

i-node
“cos318”

Write Metadata First

  Modify /u/cos318/foo

  Traverse to /u/cos318/

  Allocate data block

  Write pointer into i-node

  Write new data to foo

i-node
“/”

dir
file

i-node
“u”

dir
file

dir
file

i-node
“foo”

Old
data

New
data

Crash Consistent

Crash Consistent

Crash Inconsistent

Crash Consistent

Writing metadata first can cause inconsistency

17

i-node
“cos318”

Write Data First

  Modify /u/cos318/foo

  Traverse to /u/cos318/

  Allocate data block

  Write new data to foo

  Write pointer into i-node

i-node
“/”

dir
file

i-node
“u”

dir
file

dir
file

i-node
“foo”

Old
data

New
data

Crash Consistent

Crash Consistent

Crash Consistent

Crash Consistent

18

Consistent Updates: Bottom-Up Order

  The general approach is to use a “bottom up” order
  File data blocks, file i-node, directory file, directory i-node, …

  What about file buffer cache
  Write back all data blocks
  Update file i-node and write it to disk
  Update directory file and write it to disk
  Update directory i-node and write it to disk (if necessary)
  Continue until no directory update exists

  Does this solve the write back problem?
  Updates are consistent but leave garbage blocks around
  May need to run fsck to clean up once a while
  Ideal approach: consistent update without leaving garbage

19

Transaction Properties

  Group multiple operations together so that they have
“ACID” property:
  Atomicity

•  It either happens or doesn’t (no partial operations)
  Consistency

•  A transaction is a correct transformation of the state
  Isolation (serializability)

•  Transactions appear to happen one after the other
  Durability (persistency)

•  Once it happens, stays happened

  Question
  Do critical sections have ACID property?

20

Transactions

  Bundle many operations into a transaction
  One of the first transaction systems is Sabre American Airline

reservation system, made by IBM
  Primitives

  BeginTransaction
•  Mark the beginning of the transaction

  Commit (End transaction)
•  When transaction is done

  Rollback (Abort transaction)
•  Undo all the actions since “Begin transaction.”

  Rules
  Transactions can run concurrently
  Rollback can execute anytime
  Sophisticated transaction systems allow nested transactions

21

Implementation
  BeginTransaction

  Start using a “write-ahead” log on disk
  Log all updates

  Commit
  Write “commit” at the end of the log
  Then “write-behind” to disk by writing updates to disk
  Clear the log

  Rollback
  Clear the log

  Crash recovery
  If there is no “commit” in the log, do nothing
  If there is “commit,” replay the log and clear the log

  Assumptions
  Writing to disk is correct (recall the error detection and correction)
  Disk is in a good state before we start

22

An Example: Atomic Money Transfer
  Move $100 from account S to C (1 thread):

BeginTransaction
S = S - $100;
C = C + $100;

Commit
  Steps:

1: Write new value of S to log
2: Write new value of C to log
3: Write commit
4: Write S to disk
5: Write C to disk
6: Clear the log

  Possible crashes
  After 1
  After 2
  After 3 before 4 and 5

  Questions
  Can we swap 3 with 4?
  Can we swap 4 and 5?

C = 110
S = 700

C = 10
S = 800
C = 110
S = 700

S=700 C=110 Commit

23

Revisit The Implementation
  BeginTransaction

  Start using a “write-ahead” log on disk
  Log all updates

  Commit
  Write “commit” at the end of the log
  Then “write-behind” to disk by writing updates to disk
  Clear the log

  Rollback
  Clear the log

  Crash recovery
  If there is no “commit” in the log, do nothing
  If there is “commit,” replay the log and clear the log

  Questions
  What is “commit?”
  What if there is a crash during the recovery?

24

Two-Phase Locking for Transactions

  First phase
  Acquire all locks

  Second phase
  Commit operation release all locks

(no individual release operations)

  Rollback operation always undo the changes first and then
release all locks

25

Use Transactions in File Systems

  Make a file operation a transaction
  Create a file
  Move a file
  Write a chunk of data
  …
  Would this eliminate any need to run fsck after a crash?

  Make arbitrary number of file operations a transaction
  Just keep logging but make sure that things are idempotent:

making a very long transaction
  Recovery by replaying the log and correct the file system
  This is called logging file system or journaling file system
  Almost all new file systems are journaling (Windows NTFS,

Veritas file system, file systems on Linux)

26

Issue with Logging: Performance

 For every disk write, we now have two disk writes (on
different parts of the disk)?
  It is not so bad because once written to the log, it is safe to do

real writes later
 Performance tricks

  Changes made in memory and then logged to disk
  Log writes are sequential (synchronous writes can be fast if on

a separate disk)
  Merge multiple writes to the log with one write
  Use NVRAM (Non-Volatile RAM) to keep the log

27

Log Management

  How big is the log? Same size as the file system?
  Observation

  Log what’s needed for crash recovery
  Management method

  Checkpoint operation: flush the buffer cache to disk
  After a checkpoint, we can truncate log and start again
  Log needs to be big enough to hold changes in memory

  Some logging file systems log only metadata (file
descriptors and directories) and not file data to keep log
size down
  Would this be a problem?

28

What to Log?

 Physical blocks (directory blocks and inode blocks)
  Easy to implement but takes more space
  Which block image?

•  Before operation: Easy to go backward during recovery
•  After operation: Easy to go forward during recovery.
•  Both: Can go either way.

  Logical operations
  Example: Add name “foo” to directory #41
  More compact
  But more work at recovery time

29

Log-structured File System (LFS)

  Structure the entire file system as a log with segments
  A segment has i-nodes, indirect blocks, and data blocks
  All writes are sequential (no seeks)
  There will be holes when deleting files
  Questions

  What about read performance?
  How would you clean (garbage collection)?

Used Unused

Log structured

30

Summary

  File buffer cache
  True LRU is possible
  Simple write back is volnerable to crashes

  Disk block failures and file system recovery tools
  Individual recovery tools
  Top down traversal tools

  Consistent updates
  Transactions and ACID properties
  Logging or Journaling file systems

