
COS 318: Operating Systems 

File Layout and Directories 

Kai Li 
Computer Science Department 
Princeton University 

(http://www.cs.princeton.edu/courses/cos318/) 



2 

Topics 

 File system structure 
 Disk allocation and i-nodes 
 Directory and link implementations 
 Physical layout for performance 



3 

File System Components 

  Naming 
  File and directory naming 
  Local and remote operations 

  File access 
  Implement read/write and other 

functionalities 
  Buffer cache 

  Reduce client/server disk I/Os 
  Disk allocation 

  File data layout 
  Mapping files to blocks 

  Management 
  Tools for system administrators 

to manage file systems 

File naming 

File access 

Buffer cache 

Disk allocation M
an

ag
em

en
t 

Volume manager 



4 

Steps to Open A File 
  File name lookup and authenticate 
  Copy the file descriptors into the in-memory data structure, if it is not in yet 
  Create an entry in the open file table (system wide) if there isn’t one 
  Create an entry in PCB 
  Link up the data structures 
  Return a pointer to user 

Process 
control 
block 

. . . 

Open 
file 

pointer 
array 

Open file 
table 

(system-wide) 

File 
descriptors 
(Metadata) 

File 
descriptors 

File system 
info 

Directories 

File data 



5 

File Read and Write  

  Read 10 bytes from a file starting at byte 2? 
  seek byte 2 
  fetch the block 
  read 10 bytes 

  Write 10 bytes to a file starting at byte 2? 
  seek byte 2 
  fetch the block 
  write 10 bytes in memory 
  write out the block 



6 

Disk Layout 
  Boot block 

  Code to bootstrap the operating system 
  Super-block defines a file system 

  Size of the file system 
  Size of the file descriptor area 
  Free list pointer, or pointer to bitmap 
  Location of the file descriptor of the root directory 
  Other meta-data such as permission and various times 

  File descriptors 
  Each describes a file 

  File data blocks 
  Data for the files, the largest portion on disk 

  Where should we put the boot image? 

Super 
block 

File descriptors 
(i-node in Unix) File data blocks Boot 

block 



7 

Data Structures for Disk Allocation 

  Goal: allocation of a volume 
  A file header  

  Blocks associated with the file 
  A data structure to represent 

free space on disk 
  Bit map that uses 1 bit per 

block (sector) 
  Linked list that chains free 

blocks together 
  Buddy system 
  … 

11111111111111111000000000000000 
…

 
00000111111110000000000111111111 

11000001111000111100000000000000 

link 
addr 
size 

link 
addr 
size 

… 

Free 



8 

Contiguous Allocation 
  Request in advance for the size of the file 
  Search bit map or linked list to locate a space 
  File header 

  First block in file 
  Number of blocks 

  Pros 
  Fast sequential access 
  Easy random access 

  Cons 
  External fragmentation (what if file C needs 3 blocks) 
  Hard to grow files 

File A File B File C 



9 

Linked Files (Alto) 

  File header points to 1st 
block on disk 

  A block points to the next 
  Pros 

  Can grow files dynamically 
  Free list is similar to a file 

  Cons 
  Random access: horrible 
  Unreliable: losing a block 

means losing the rest 

File header 

null 

. . . 



10 

217 

File Allocation Table (FAT) 

  Approach 
  A section of disk for each 

partition is reserved 
  One entry for each block 
  A file is a linked list of 

blocks 
  A directory entry points to 

the 1st block of the file 
  Pros 

  Simple 
  Cons 

  Always go to FAT 
  Wasting space 

619 

399 

foo 217 

EOF 

FAT Allocation Table 

0 

399 

619 



11 

Single-Level Indexed Files 

  A user declares max size 
  A file header holds an array 

of pointers to point to disk 
blocks 

  Pros 
  Can grow up to a limit 
  Random access is fast 

  Cons 
  Clumsy to grow beyond the 

limit 
  Still lots of seeks 

File header 
Disk 
blocks 



12 

DEMOS (Cray-1) 

  Idea 
  Using contiguous allocation 
  Allow non-contiguous 

  Approach 
  10 (base,size) pointers 
  Indirect for big files 

  Pros & cons 
  Can grow (max 10GB) 
  fragmentation 
  find free blocks 

data 
. . . 

(base,size) 

. . . 

(base,size) 

data 
. . . 



13 

Multi-Level Indexed Files (Unix) 

  13 Pointers in a header 
  10 direct pointers 
  11: 1-level indirect 
  12: 2-level indirect 
  13: 3-level indirect 

  Pros & Cons 
  In favor of small files 
  Can grow 
  Limit is 16G and lots of 

seek 
  What happens to reach 

block 23, 5, 340? 

1           
2           

data 

data 
. . . 
11          
12          
13          

data 
. . . 

. . . data 
. . . 

. . . data 
. . . 

. . . 



14 

What’s in Original Unix i-node? 

  Mode: file type, protection bits, setuid, setgid bits 
  Link count: number of directory entries pointing to this 
  Uid: uid of the file owner 
  Gid: gid of the file owner 
  File size 
  Times (access, modify, change) 

  10 pointers to data blocks 
  Single indirect pointer 
  Double indirect pointer 
  Triple indirect pointer 



15 

Extents 

  Instead of using a fix-
sized block, use a 
number of blocks 
  XFS uses 8Kbyte block 
  Max extent size is 2M 

blocks 
  Index nodes need to have 

  Block offset 
  Length 
  Starting block 

  Is this approach better 
than the Unix i-node 
approach? 

Block offset 
length 

Starting block 

           . . . 



16 

Naming 

 Text name 
  Need to map it to index 

  Index (i-node number) 
  Ask users to specify i-node number 

  Icon 
  Need to map it to index or map it to text then to index 



17 

Directory Organization Examples 

  Flat (CP/M) 
  All files are in one directory 

  Hierarchical (Unix) 
  /u/cos318/foo 
  Directory is stored in a file containing (name, i-node) pairs 
  The name can be either a file or a directory 

  Hierarchical (Windows) 
  C:\windows\temp\foo 
  Use the extension to indicate whether the entry is a directory 



18 

Mapping File Names to i-nodes 

  Create/delete 
  Create/delete a directory 

  Open/close 
  Open/close a directory for read and write 
  Should this be the same or different from file open/close? 

  Link/unlink 
  Link/unlink a file 

  Rename 
  Rename the directory 



19 

Linear List 

  Method 
  <FileName, i-node> pairs are 

linearly stored in a file 
  Create a file 

•  Append <FileName, i-node> 
  Delete a file 

•  Search for FileName 
•  Remove its pair from the 

directory 
•  Compact by moving the rest 

  Pros 
  Space efficient 

  Cons 
  Linear search 
  Need to deal with fragmentation  

/u/li/ 
  foo  bar  …  
  veryLongFileName 

<foo,1234> <bar, 
 1235> … <very 
LongFileName,  
4567> 



20 

Tree Data Structure 

 Method 
  Store <fileName, i-node> a tree data 

structure such as B-tree 
  Create/delete/search in the tree data 

structure 
 Pros 

  Good for a large number of files 
 Cons 

  Inefficient for a small number of files 
  More space 
  Complex 

… 



21 

Hashing 

  Method 
  Use a hash table to map 

FileName to i-node 
  Space for name and 

metadata is variable sized 
  Create/delete will trigger 

space allocation and free 
  Pros 

  Fast searching and relatively 
simple 

  Cons 
  Not as efficient as trees for 

very large directory (wasting 
space for the hash table) 

…
 

foo 
bar 

1234 
1235 

foobar 4567 



22 

Disk I/Os for Read/Write A File 

  Disk I/Os to access a byte of /u/cos318/foo 
  Read the i-node and first data block of “/” 
  Read the i-node and first data block of “u” 
  Read the i-node and first data block of “cos318” 
  Read the i-node and first data block of “foo” 

  Disk I/Os to write a file 
  Read the i-node of the directory and the directory file. 
  Read or create the i-node of the file 
  Read or create the file itself 
  Write back the directory and the file 

  Too many I/Os to traverse the directory 
  Solution is to use Current Working Directory 



23 

Links 

 Symbolic (soft) links 
  A symbolic link is a pointer to a file 
  Use a new i-node for the link 
ln –s source target 

 Hard links 
  A link to a file with the same i-node 
ln source target 

  Delete may or may not remove the target depending on 
whether it is the last one (link reference count) 

 Why symbolic or hard links? 
 How would you implement them? 



24 

Original Unix File System 

  Simple disk layout 
  Block size is sector size (512 bytes) 
  i-nodes are on outermost cylinders 
  Data blocks are on inner cylinders 
  Use linked list for free blocks 

  Issues 
  Index is large 
  Fixed max number of files 
  i-nodes far from data blocks 
  i-nodes for directory not close together 
  Consecutive blocks can be anywhere 
  Poor bandwidth (20Kbytes/sec even for 

sequential access!) 

i-node array 



25 

BSD FFS (Fast File System) 

  Use a larger block size: 4KB or 8KB 
  Allow large blocks to be chopped into 

fragments 
  Used for little files and pieces at the 

ends of files 
  Use bitmap instead of a free list 

  Try to allocate contiguously 
  10% reserved disk space 

foo 

bar 



26 

FFS Disk Layout 

  i-nodes are grouped together 
  A portion of the i-node array on each 

cylinder 

  Do you ever read i-nodes without 
reading any file blocks? 
  4 times more often than reading 

together 
  examples: ls, make 

  Overcome rotational delays 
  Skip sector positioning to avoid the 

context switch delay 
  Read ahead: read next block right 

after the first 

i-node subarray 



27 

What Has FFS Achieved? 

  Performance improvements 
  20-40% of disk bandwidth for large files (10-20x original) 
  Better small file performance  (why?) 

  We can still do a lot better   
  Extent based instead of block based 

•  Use a pointer and size for all contiguous blocks (XFS, Veritas 
file system, etc) 

  Synchronous metadata writes hurt small file performance 
•  Asynchronous writes with certain ordering (“soft updates”)  
•  Logging (talk about this later) 
•  Play with semantics (/tmp file systems) 



28 

Summary 

  File system structure 
  Boot block, super block, file metadata, file data 

  File metadata 
  Consider efficiency, space and fragmentation 

  Directories 
  Consider the number of files 

  Links 
  Soft vs. hard 

  Physical layout 
  Where to put metadata and data 


