
12/13/12

A Deduplication File System
&

Course Review

Kai Li

Topics

 A Deduplication File System
 Review

12/13/12 2

3

Traditional Data Center Storage Hierarchy

Network SAN

Clients Server

Storage

…

Storage

Onsite
Backup

Offsite
backup

Remote
mirror

4

Evolved Data Center Storage Hierarchy

Network

Clients

Storage

…

Onsite
Backup

Offsite
backup

Remote
mirror Network

Attached
Storage
(NAS)

w/ snapshots
to protect data

Promises
  Purchase: ~Tape libraries
  Space: 10-30X reduction
  WAN BW: 10-100X reduction
  Power: ~10X reduction

A Data Center with Deduplication Storage

12/13/12 5

Mirrored
storage

Clients Server Primary
storage

WAN Onsite

Remote

What Is “Deduplication?”

 Deduplication is global compression that
removes the redundant segments globally
(across many files)

 Local compression tools (gzip, winzip, …)
encode redundant strings in a small window
(within a file)

12/13/12 6

Idea of Deduplication

12/13/12 7

Traditional local
compression

~2-3X compression

Encode a sliding window
of bytes (e.g. 100K)

[Ziv&Lempel77]

Deduplication

~10-50X compression

Large window ⇒ more redundant data

Main Deduplication Methods

  Fingerprinting
  Computing a fingerprint as the ID for each segment
  Use an index to lookup if the segment is a duplicate
  Is the fingerprint in the index?
  Yes: duplicate
  No: new segment

  Deltas
  Computing a sketch for each segment [Broder97]
  Find the most similar segment by comparing sketches
  Yes:

•  Compute deltas with the most similar segment
•  Write delta and a pointer to the similar segment

  No: new segment

12/13/12 8

Backup Data Example
View from Backup Software (tar or similar format)

First Full Backup Incr 1 Incr 2 Second Full Backup

A B C D E F G H I J Deduplicated Storage:
Redundancies pooled, compressed

= Unique variable segments
= Redundant data segments
= Compressed unique segments

A B C D A E F G A B H A E I B J C D E F G H

Data
Stream

12/13/12 9

 Fixed size

 Content-based, variable size

Two Segmentation Methods

12/13/12 10

A X C D A Y C D A B C D A B

fp = 10110000

4k 4k 4k . . .

. . .

fp = 10110100

fp = 10110110
. . .

Cannot handle
adds, deletes
(shifts) well

Independent of
adds, deletes

(shifts)

“Rolling fingerprinting”

Segment Sizes

12/13/12 11

  Double segment size
  Increase space for unique segments by 15%
  Decrease most metadata by about 50%
  Reduce disk I/Os for writes and reads

  Use the right size for compression ratio and speed

Components in Data Domain
Deduplication File System

Interfaces (NFS, CIFS, VTL, …)

 Object-Oriented File System

Deduplication

RAID-6

 GC & Verification

Disk Shelves
12/13/12 12

 Data Layout R
ep

lic
at

io
n

Design Challenges

  Extremely reliable and self-healing
  Corrupting a segment may corrupt multiple files
  NVRAM to store log (transactions)
  Invulnerability features:

•  Frequent verifications
•  Metadata reconstruction from self-describing containers
•  Self-correction from RAID-6

  High-speed high-compression at low HW cost
  Why high speed: data 2X/18 months and 24 hours/day
  Why high compression: low cost and fewer disks
  Use commodity server hardware

12/13/12 13

Revisit the Deduplication Process
(Fingerprinting)

12/13/12 14

Fingerprint
Index Lookup

Divide data streams
into segments

Index size for 80TB
w/ 8KB segments
= (80TB/8KB) * 20B
= 200GB!

Yes: Fingerprint

No: pack segment into
 container, apply
 local compression,
 write out to disk

Problematic Alternative 1: Caching

12/13/12 15

Fingerprint
Index

Lookup

Divide data streams
into segments

Index
Cache

Miss

Problem: No locality.

Problematic Alternative 2:
Parallel Index [Venti02]

12/13/12 16

Fingerprint
Index

Lookup

Divide data streams
into segments

Index
Cache

Miss

Problem:
 Need a lot of disks.
 7200RPM disk does 120 lookups/sec.
 1MB/sec with 8KB segment per disk
 1GB/sec needs 1,000 disks!

. . .

Problematic Alternative 3: Staging

12/13/12 17

Fingerprint
Index

Lookup

Divide data streams
into segments

Problem: The Buffer needs to be as large or
 larger than the full backup!
 Big delay and may still never catch up

. . .

Very Big Disk Buffer

Data Streams

High-Speed High Compression
at Low HW Cost

 Layout data on disk with “duplicate locality”
 A sophisticated cache for the fingerprint index

  Summary data structure for new data
  “locality-preserved caching” for old data

 Parallelized deduplication architecture to take full
advantage of multicore processors

Benjamin Zhu, Kai Li and Hugo Patterson. Avoiding the Disk
Bottleneck in the Data Domain Deduplication File System. In
Proceedings of The 6th USENIX Conference on File and Storage
Technologies (FAST’08). February 2008

12/13/12 18

Summary Vector
Goal: Use minimal memory to test for new data
⇒ Summarize what segments have been stored, with

Bloom filter (Bloom’70) in RAM
⇒ If Summary Vector says no, it’s new segment

Approximation

Index Data Structure

Summary Vector

12/13/12 19

Known Analysis Results

 Bloom filter with m bits k independent hash
functions

 After inserting n keys, the probability of a false
positive is:

 Examples:
  m/n = 6, k = 4: p = 0.0561
  m/n = 8, k = 6: p = 0.0215
  …

 Experimental data validate the analysis results
12/13/12 20

Stream Informed Segment Layout

Goal: Capture “duplicate locality” on disk
  Segments from the same stream are stored in the

same “containers”
  Metadata (index data) are also in the containers

12/13/12 21

Locality Preserved Caching (LPC)
Goal: Maintain “duplicate locality” in the cache

  Disk Index has all <fingerprint, containerID> pairs
  Index Cache caches a subset of such pairs
  On a miss, lookup Disk Index to find containerID
  Load the metadata of a container into Index Cache,

replace if needed

12/13/12 22

Disk
Index

Metadata

Data
ContainerID Index

Cache
Miss

Load
metadata

Replacement

Container

Putting Them Together

12/13/12 23

Index
Cache Duplicate

No

A fingerprint

Disk
Index data

metadata

data

metadata

data

metadata

data

metadata

Summary
Vector New

Maybe

Replacement

Evaluation

 What to evaluate
  Disk I/O reduction
  Write and read throughput
  Deduplication results

 Platform (DD880)
  4 × Quad 2.9Ghz XeonCPUs, 32GB RAM, 10GE

NIC, 2 x 1GB NVRAM, 96TB 7,200 RPM ATA disks

12/13/12 24

Disk I/O Reduction Results
Exchange data (2.56TB)

135-daily full backups
Engineering data (2.39TB)
100-day daily inc, weekly full

disk I/Os % of total # disk I/Os % of total

No summary,
No SISL/LPC 328,613,503 100.00% 318,236,712 100.00%

Summary only 274,364,788 83.49% 259,135,171 81.43%

SISL/LPC only 57,725,844 17.57% 60,358,875 18.97%

Summary &
SISL/LPC 3,477,129 1.06% 1,257,316 0.40%

12/13/12 25

NFS Deduplication Write

12/13/12 26

Backup Generations

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

NetBackup OST Deduplication Write

12/13/12 27

Backup Generations

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

NFS Deduplication Read

12/13/12 28

Backup Generations

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

NetBackup OST Deduplication Read

12/13/12 29

Backup Generations

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Real World Example at Datacenter A

12/13/12 30

Real World Compression at Datacenter A

12/13/12 31

Real World Example at Datacenter B

12/13/12 32

Real World Compression at Datacenter B

12/13/12 33

Summary
  Deduplication removes redundant data globally
  Advanced deduplication file system

  Has become a de facto standard to store highly
redundant data because of reduction in cost,
performance, power, space, …

  Scalable performance with multicore CPUs
  Use cases

  Backup, nearline, archival and flash

12/13/12 34

35

Review Topics

 OS structure
 Process management
 CPU scheduling
  I/O devices
 Virtual memory
 Disks and file systems
 General concepts

36

Operating System Structure

 Abstraction
 Protection and security
 Kernel structure

  Layered
  Monolithic
  Micro-kernel

 Virtualization
  Virtual machine monitor

37

Process Management

  Implementation
  State, creation, context switch
  Threads and processes

  Synchronization
  Race conditions and inconsistencies
  Mutual exclusion and critical sections
  Semaphores: P() and V()
  Atomic operations: interrupt disable, test-and-set.
  Monitors and Condition Variables
  Mesa-style monitor

  Deadlocks
  How deadlocks occur?
  How to prevent deadlocks?

38

CPU Scheduling

 Allocation
  Non-preemptible resources

 Scheduling -- Preemptible resources
  FIFO
  Round-robin
  STCF
  Lottery

I/O Devices

 Latency and bandwidth
  Interrupts and exceptions
 DMA mechanisms
 Synchronous I/O operations
 Asynchronous I/O operations
 Message passing

12/13/12 39

40

Virtual Memory

 Mechanisms
  Paging
  Segmentation
  Page and segmentation
  TLB and its management

 Page replacement
  FIFO with second chance
  Working sets
  WSClock

41

Disks and File Systems

  Disks
  Disk behavior and disk scheduling
  RAID5 and RAID6

  Flash memory
  Write performance
  Wear leveling
  Flash translation layer

  Directories and implementation
  File layout
  Buffer cache
  Transaction and its implementation
  NFS and Stateless file system
  Snapshot
  Deduplication file system

42

Implementation

  BeginTransaction
  Start using a “write-ahead” log on disk
  Log all updates

  Commit
  Write “commit” at the end of the log
  Then “write-behind” to disk by writing updates to disk
  Clear the log

  Rollback
  Clear the log

  Crash recovery
  If there is no “commit” in the log, do nothing
  If there is “commit,” replay the log and clear the log

  Assumptions
  Writing to disk is correct (recall the error detection and correction)
  Disk is in a good state before we start

43

An Example: Atomic Money
Transfer

  Move $100 from account S to C (1 thread):
BeginTransaction

S = S - $100;
C = C + $100;

Commit
  Steps:

1: Write new value of S to log
2: Write new value of C to log
3: Write commit
4: Write S to disk
5: Write C to disk
6: Clear the log

  Possible crashes
  After 1
  After 2
  After 3 before 4 and 5

  Questions
  Can we swap 3 with 4?
  Can we swap 4 and 5?

C = 110
S = 700

C = 10
S = 800
C = 110
S = 700

S=700 C=110 Commit

Questions

  Do the following transactions behave the same?
BeginTransaction

C = C + $100;
S = S - $100;

Commit

BeginTransaction
S = S - $100;
C = C + $100;

Commit
  Yes, this is why transactions are good

  Flushing buffer cache without worrying about the order of
writes

  Group transactions in data base systems
  Many more convenient programming

12/13/12 44

45

Major Concepts

 Locality
  Spatial and temporal locality

 Scheduling
  Use the past to predict the future

 Layered abstractions
  Synchronization, transactions, file systems, etc

 Caching
  TLB, VM, buffer cache, etc

46

Operating System as Illusionist

Physical reality
  Single CPU
  Interrupts

  Limited memory
  No protection

  Raw storage device

Abstraction
  Infinite number of CPUs
  Cooperating sequential

threads
  Unlimited virtual memory
  Each address has its own

machine
  Organized and reliable

storage system

Future Courses

 Spring
  COS 461: computer networks
  COS 598C: Analytics and systems of big data

 Fall:
  COS 432: computer security
  COS 561: Advance computer networks or (or COS

518: Advanced OS)
  Some grad seminars in systems

12/13/12 47

