
12/13/12

A Deduplication File System
&

Course Review

Kai Li

Topics

 A Deduplication File System
 Review

12/13/12 2

3

Traditional Data Center Storage Hierarchy

Network SAN

Clients Server

Storage

…

Storage

Onsite
Backup

Offsite
backup

Remote
mirror

4

Evolved Data Center Storage Hierarchy

Network

Clients

Storage

…

Onsite
Backup

Offsite
backup

Remote
mirror Network

Attached
Storage
(NAS)

w/ snapshots
to protect data

Promises
  Purchase: ~Tape libraries
  Space: 10-30X reduction
  WAN BW: 10-100X reduction
  Power: ~10X reduction

A Data Center with Deduplication Storage

12/13/12 5

Mirrored
storage

Clients Server Primary
storage

WAN Onsite

Remote

What Is “Deduplication?”

 Deduplication is global compression that
removes the redundant segments globally
(across many files)

 Local compression tools (gzip, winzip, …)
encode redundant strings in a small window
(within a file)

12/13/12 6

Idea of Deduplication

12/13/12 7

Traditional local
compression

~2-3X compression

Encode a sliding window
of bytes (e.g. 100K)

[Ziv&Lempel77]

Deduplication

~10-50X compression

Large window ⇒ more redundant data

Main Deduplication Methods

  Fingerprinting
  Computing a fingerprint as the ID for each segment
  Use an index to lookup if the segment is a duplicate
  Is the fingerprint in the index?
  Yes: duplicate
  No: new segment

  Deltas
  Computing a sketch for each segment [Broder97]
  Find the most similar segment by comparing sketches
  Yes:

•  Compute deltas with the most similar segment
•  Write delta and a pointer to the similar segment

  No: new segment

12/13/12 8

Backup Data Example
View from Backup Software (tar or similar format)

First Full Backup Incr 1 Incr 2 Second Full Backup

A B C D E F G H I J Deduplicated Storage:
Redundancies pooled, compressed

= Unique variable segments
= Redundant data segments
= Compressed unique segments

A B C D A E F G A B H A E I B J C D E F G H

Data
Stream

12/13/12 9

 Fixed size

 Content-based, variable size

Two Segmentation Methods

12/13/12 10

A X C D A Y C D A B C D A B

fp = 10110000

4k 4k 4k . . .

. . .

fp = 10110100

fp = 10110110
. . .

Cannot handle
adds, deletes
(shifts) well

Independent of
adds, deletes

(shifts)

“Rolling fingerprinting”

Segment Sizes

12/13/12 11

  Double segment size
  Increase space for unique segments by 15%
  Decrease most metadata by about 50%
  Reduce disk I/Os for writes and reads

  Use the right size for compression ratio and speed

Components in Data Domain
Deduplication File System

Interfaces (NFS, CIFS, VTL, …)

 Object-Oriented File System

Deduplication

RAID-6

 GC & Verification

Disk Shelves
12/13/12 12

 Data Layout R
ep

lic
at

io
n

Design Challenges

  Extremely reliable and self-healing
  Corrupting a segment may corrupt multiple files
  NVRAM to store log (transactions)
  Invulnerability features:

•  Frequent verifications
•  Metadata reconstruction from self-describing containers
•  Self-correction from RAID-6

  High-speed high-compression at low HW cost
  Why high speed: data 2X/18 months and 24 hours/day
  Why high compression: low cost and fewer disks
  Use commodity server hardware

12/13/12 13

Revisit the Deduplication Process
(Fingerprinting)

12/13/12 14

Fingerprint
Index Lookup

Divide data streams
into segments

Index size for 80TB
w/ 8KB segments
= (80TB/8KB) * 20B
= 200GB!

Yes: Fingerprint

No: pack segment into
 container, apply
 local compression,
 write out to disk

Problematic Alternative 1: Caching

12/13/12 15

Fingerprint
Index

Lookup

Divide data streams
into segments

Index
Cache

Miss

Problem: No locality.

Problematic Alternative 2:
Parallel Index [Venti02]

12/13/12 16

Fingerprint
Index

Lookup

Divide data streams
into segments

Index
Cache

Miss

Problem:
 Need a lot of disks.
 7200RPM disk does 120 lookups/sec.
 1MB/sec with 8KB segment per disk
 1GB/sec needs 1,000 disks!

. . .

Problematic Alternative 3: Staging

12/13/12 17

Fingerprint
Index

Lookup

Divide data streams
into segments

Problem: The Buffer needs to be as large or
 larger than the full backup!
 Big delay and may still never catch up

. . .

Very Big Disk Buffer

Data Streams

High-Speed High Compression
at Low HW Cost

 Layout data on disk with “duplicate locality”
 A sophisticated cache for the fingerprint index

  Summary data structure for new data
  “locality-preserved caching” for old data

 Parallelized deduplication architecture to take full
advantage of multicore processors

Benjamin Zhu, Kai Li and Hugo Patterson. Avoiding the Disk
Bottleneck in the Data Domain Deduplication File System. In
Proceedings of The 6th USENIX Conference on File and Storage
Technologies (FAST’08). February 2008

12/13/12 18

Summary Vector
Goal: Use minimal memory to test for new data
⇒ Summarize what segments have been stored, with

Bloom filter (Bloom’70) in RAM
⇒ If Summary Vector says no, it’s new segment

Approximation

Index Data Structure

Summary Vector

12/13/12 19

Known Analysis Results

 Bloom filter with m bits k independent hash
functions

 After inserting n keys, the probability of a false
positive is:

 Examples:
  m/n = 6, k = 4: p = 0.0561
  m/n = 8, k = 6: p = 0.0215
  …

 Experimental data validate the analysis results
12/13/12 20

Stream Informed Segment Layout

Goal: Capture “duplicate locality” on disk
  Segments from the same stream are stored in the

same “containers”
  Metadata (index data) are also in the containers

12/13/12 21

Locality Preserved Caching (LPC)
Goal: Maintain “duplicate locality” in the cache

  Disk Index has all <fingerprint, containerID> pairs
  Index Cache caches a subset of such pairs
  On a miss, lookup Disk Index to find containerID
  Load the metadata of a container into Index Cache,

replace if needed

12/13/12 22

Disk
Index

Metadata

Data
ContainerID Index

Cache
Miss

Load
metadata

Replacement

Container

Putting Them Together

12/13/12 23

Index
Cache Duplicate

No

A fingerprint

Disk
Index data

metadata

data

metadata

data

metadata

data

metadata

Summary
Vector New

Maybe

Replacement

Evaluation

 What to evaluate
  Disk I/O reduction
  Write and read throughput
  Deduplication results

 Platform (DD880)
  4 × Quad 2.9Ghz XeonCPUs, 32GB RAM, 10GE

NIC, 2 x 1GB NVRAM, 96TB 7,200 RPM ATA disks

12/13/12 24

Disk I/O Reduction Results
Exchange data (2.56TB)

135-daily full backups
Engineering data (2.39TB)
100-day daily inc, weekly full

disk I/Os % of total # disk I/Os % of total

No summary,
No SISL/LPC 328,613,503 100.00% 318,236,712 100.00%

Summary only 274,364,788 83.49% 259,135,171 81.43%

SISL/LPC only 57,725,844 17.57% 60,358,875 18.97%

Summary &
SISL/LPC 3,477,129 1.06% 1,257,316 0.40%

12/13/12 25

NFS Deduplication Write

12/13/12 26

Backup Generations

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

NetBackup OST Deduplication Write

12/13/12 27

Backup Generations

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

NFS Deduplication Read

12/13/12 28

Backup Generations

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

NetBackup OST Deduplication Read

12/13/12 29

Backup Generations

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Real World Example at Datacenter A

12/13/12 30

Real World Compression at Datacenter A

12/13/12 31

Real World Example at Datacenter B

12/13/12 32

Real World Compression at Datacenter B

12/13/12 33

Summary
  Deduplication removes redundant data globally
  Advanced deduplication file system

  Has become a de facto standard to store highly
redundant data because of reduction in cost,
performance, power, space, …

  Scalable performance with multicore CPUs
  Use cases

  Backup, nearline, archival and flash

12/13/12 34

35

Review Topics

 OS structure
 Process management
 CPU scheduling
  I/O devices
 Virtual memory
 Disks and file systems
 General concepts

36

Operating System Structure

 Abstraction
 Protection and security
 Kernel structure

  Layered
  Monolithic
  Micro-kernel

 Virtualization
  Virtual machine monitor

37

Process Management

  Implementation
  State, creation, context switch
  Threads and processes

  Synchronization
  Race conditions and inconsistencies
  Mutual exclusion and critical sections
  Semaphores: P() and V()
  Atomic operations: interrupt disable, test-and-set.
  Monitors and Condition Variables
  Mesa-style monitor

  Deadlocks
  How deadlocks occur?
  How to prevent deadlocks?

38

CPU Scheduling

 Allocation
  Non-preemptible resources

 Scheduling -- Preemptible resources
  FIFO
  Round-robin
  STCF
  Lottery

I/O Devices

 Latency and bandwidth
  Interrupts and exceptions
 DMA mechanisms
 Synchronous I/O operations
 Asynchronous I/O operations
 Message passing

12/13/12 39

40

Virtual Memory

 Mechanisms
  Paging
  Segmentation
  Page and segmentation
  TLB and its management

 Page replacement
  FIFO with second chance
  Working sets
  WSClock

41

Disks and File Systems

  Disks
  Disk behavior and disk scheduling
  RAID5 and RAID6

  Flash memory
  Write performance
  Wear leveling
  Flash translation layer

  Directories and implementation
  File layout
  Buffer cache
  Transaction and its implementation
  NFS and Stateless file system
  Snapshot
  Deduplication file system

42

Implementation

  BeginTransaction
  Start using a “write-ahead” log on disk
  Log all updates

  Commit
  Write “commit” at the end of the log
  Then “write-behind” to disk by writing updates to disk
  Clear the log

  Rollback
  Clear the log

  Crash recovery
  If there is no “commit” in the log, do nothing
  If there is “commit,” replay the log and clear the log

  Assumptions
  Writing to disk is correct (recall the error detection and correction)
  Disk is in a good state before we start

43

An Example: Atomic Money
Transfer

  Move $100 from account S to C (1 thread):
BeginTransaction

S = S - $100;
C = C + $100;

Commit
  Steps:

1: Write new value of S to log
2: Write new value of C to log
3: Write commit
4: Write S to disk
5: Write C to disk
6: Clear the log

  Possible crashes
  After 1
  After 2
  After 3 before 4 and 5

  Questions
  Can we swap 3 with 4?
  Can we swap 4 and 5?

C = 110
S = 700

C = 10
S = 800
C = 110
S = 700

S=700 C=110 Commit

Questions

  Do the following transactions behave the same?
BeginTransaction

C = C + $100;
S = S - $100;

Commit

BeginTransaction
S = S - $100;
C = C + $100;

Commit
  Yes, this is why transactions are good

  Flushing buffer cache without worrying about the order of
writes

  Group transactions in data base systems
  Many more convenient programming

12/13/12 44

45

Major Concepts

 Locality
  Spatial and temporal locality

 Scheduling
  Use the past to predict the future

 Layered abstractions
  Synchronization, transactions, file systems, etc

 Caching
  TLB, VM, buffer cache, etc

46

Operating System as Illusionist

Physical reality
  Single CPU
  Interrupts

  Limited memory
  No protection

  Raw storage device

Abstraction
  Infinite number of CPUs
  Cooperating sequential

threads
  Unlimited virtual memory
  Each address has its own

machine
  Organized and reliable

storage system

Future Courses

 Spring
  COS 461: computer networks
  COS 598C: Analytics and systems of big data

 Fall:
  COS 432: computer security
  COS 561: Advance computer networks or (or COS

518: Advanced OS)
  Some grad seminars in systems

12/13/12 47

