
COS 318: Operating Systems

CPU Scheduling

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

  CPU scheduling basics
  CPU Scheduling algorithms

When to Schedule?

  Process/thread creation
  Process/thread exit
  Blocking on I/O or synchronization
  I/O interrupt
  Clock interrupt (pre-emptive scheduling)

3

4

Preemptive vs. Non-Preemptive Scheduling

  Preemptive
scheduling
  Running ⇒ ready
  Blocked ⇒ ready
  Running ⇒ blocked
  Terminate

  Non-preemptive
scheduling
  Running ⇒ blocked
  Terminate

  Batch vs interactive
vs real-time

Running

Blocked
Ready

Resource free,
I/O completion interrupt

(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

Scheduling Criteria
  Assumptions

  One program per user and one thread per program
  Programs are independent

  Goals for batch and interactive systems
  Provide fairness
  Everyone makes some progress; no one starves
  Maximize CPU utilization

•  Not including idle process
  Maximize throughput

•  Operations/second (min overhead, max resource utilization)
  Minimize turnaround time

•  Batch jobs: time to execute (from submission to completion)
  Shorten response time

•  Interactive jobs: time response (e.g. typing on a keyboard)
  Proportionality

•  Meets user’s expectations

Scheduling Criteria

  Questions:
  What are the goals for PCs versus servers?
  Average response time vs. throughput
  Average response time vs. fairness

7

Problem Cases

  Completely blind about job types
  No CPU and I/O overlap.

  Optimization involves favoring jobs of type “A” over “B”
  Lots of A’s? B’s starve.

  Interactive process trapped behind others
  Response time bad for no good reason.

  Priorities: A depends on B and A’s priority > B’s
  B never runs.

Scheduling Algorithms

  Simplified view of scheduling:
  Save process state (to PCB)
  Pick which process to run next
  Dispatch process

8

First-Come-First-Serve (FCFS) Policy

  What does it mean?
  Run to completion (old days)
  Run until blocked or yields

  Example 1
  P1 = 24sec, P2 = 3sec, and P3 = 3sec, submitted together
  Average response time = (24 + 27 + 30) / 3 = 27

  Example 2
  Same jobs but come in different order: P2, P3 and P1
  Average response time = (3 + 6 + 30) / 3 = 13

P1 P2 P3

P2 P3 P1

(Gantt Graph)

STCF and SRTCF

 Shortest Time to Completion First
  Non-preemptive

 Shortest Remaining Time to Completion First
  Preemptive version

 Example
  P1 = 6sec, P2 = 8sec, P3 = 7sec, P4 = 3sec
  All arrive at the same time

 Can you do better than SRTCF in terms of average
response time?

  Issues with this approach?

P1 P2 P3 P4

Round Robin

  Similar to FCFS, but add a time slice for timer interrupt
  FCFS for preemptive scheduling
  Real systems also have I/O interrupts in the mix

  How do you choose time slice?

Current
process

FCFS vs. Round Robin

  Example
  10 jobs and each takes 100 seconds

  FCFS (non-preemptive scheduling)
  job 1: 100s, job2: 200s, ... , job10: 1000s

  Round Robin (preemptive scheduling)
  time slice 1sec and no overhead
  job1: 991s, job2: 992s, ... , job10: 1000s

  Comparisons
  Round robin is much worse (turnaround time) for jobs about

the same length
  Round robin is better for short jobs

Resource Utilization Example

  A, B, and C run forever (in this order)
  A and B each uses 100% CPU forever
  C is a CPU plus I/O job (1ms CPU + 10ms disk I/O)

  Time slice 100ms
  A (100ms CPU), B (100ms CPU), C (1ms CPU + 10ms I/O),

…

  Time slice 1ms
  A (1ms CPU), B (1ms CPU), C (1ms CPU),

A (1ms CPU), B (1ms CPU), C(10ms I/O) || A, B, …, A, B

  What do we learn from this example?

14

Virtual Round Robin

  Aux queue is FIFO
  I/O bound processes go

to aux queue (instead
of ready queue) to get
scheduled

  Aux queue has
preference over ready
queue

CPU Admit

Timeout

Dispatch

I/O wait

I/O wait

I/O wait

Aux queue

I/O
 c

om
pl

et
io

n

15

Priority Scheduling

 Obvious
  Not all processes are equal, so rank them

 The method
  Assign each process a priority
  Run the process with highest priority in the ready queue first
  Adjust priority dynamically (I/O wait raises the priority, reduce

priority as process runs)
 Why adjusting priorities dynamically

  T1 at priority 4, T2 at priority 1 and T2 holds lock L
  Scenario

•  T1 tries to acquire L, fails, blocks.
•  T3 enters system at priority 3.
•  T2 never gets to run!

Multiple Queues

  Jobs start at highest priority queue
  If timeout expires, drop one level
  If timeout doesn’t expires, stay or pushup one level

  What does this method do?

Priority
4
3
2
1

Time slices
1
2
4
8

Lottery Scheduling

  Motivations
  SRTCF does well with average response time, but unfair

  Lottery method
  Give each job a number of tickets
  Randomly pick a winning tickets
  To approximate SRTCF, give short jobs more tickets
  To avoid starvation, give each job at least one ticket
  Cooperative processes can exchange tickets

  Question
  How do you compare this method with priority scheduling?

18

Multiprocessor and Cluster

Multiprocessor architecture
  Cache coherence
  Single OS

Cluster or multicomputer
  Distributed memory
  An OS in each box

…
CPU

L1 $

L2 $

CPU

L1 $

L2 $

…

Memory Network

19

Multiprocessor/Cluster Scheduling

 Design issue
  Process/thread to processor assignment

 Gang scheduling (co-scheduling)
  Threads of the same process will run together
  Processes of the same application run together

 Dedicated processor assignment
  Threads will be running on specific processors to completion
  Is this a good idea?

20

Real-Time Scheduling

 Two types of real-time
  Hard deadline

•  Must meet, otherwise can cause fatal error
  Soft Deadline

•  Meet most of the time, but not mandatory

 Admission control
  Take a real-time process only if the system can guarantee the

“real-time” behavior of all processes
  The jobs are schedulable, if the following holds:

 where Ci = computation time, and Ti = period

∑ Ci
Ti

≤ 1

21

Rate Monotonic Scheduling (Liu & Layland 73)

  Assumptions
  Each periodic process must complete within its period
  No process is dependent on any other process
  Each process needs the same amount of CPU time on each

burst
  Non-periodic processes have no deadlines
  Process preemption occurs instantaneously (no overhead)

  Main ideas of RMS
  Assign each process a fixed priority = frequency of occurrence
  Run the process with highest priority
  Prove to be optimal

  Example
  P1 runs every 30ms gets priority 33 (33 times/sec)
  P2 runs every 50ms gets priority 20 (20 times/sec)

22

Earliest Deadline Scheduling

 Assumptions
  When a process needs CPU time, it announces its deadline
  No need to be periodic process
  CPU time needed may vary

 Main idea of EDS
  Sort ready processes by their deadlines
  Run the first process on the list (earliest deadline first)
  When a new process is ready, it preempts the current one if its

deadline is closer
 Example

  P1 needs to finish by 30sec, P2 by 40sec and P3 by 50sec
  P1 goes first
  More in MOS 7.4.4

23

4.3 BSD Scheduling with Multi-Queue

  “1 sec” preemption
  Preempt if a process doesn’t block or complete within 1

second
  Priority is recomputed every second

  Pi = base + (CPUi-1) / 2 + nice, where CPUi = (Ui + CPUi-1) / 2
  Base is the base priority of the process
  Ui is process utilization in interval i

  Priorities
  Swapper
  Block I/O device control
  File operations
  Character I/O device control
  User processes

24

Linux Scheduling

  Time-sharing scheduling
  Each process has a priority and # of credits
  I/O event will raise the priority
  Process with the most credits will run next
  A timer interrupt causes a process to lose a credit
  If no process has credits, then the kernel issues credits to all

processes: credits = credits/2 + priority

  Real-time scheduling
  Soft real-time
  Kernel cannot be preempted by user code

25

Windows Scheduling

 Classes and priorities
  Real time: 16 static priorities
  Variable: 16 variable priorities, start at a base priority

•  If a process has used up its quantum, lower its priority
•  If a process waits for an I/O event, raise its priority

 Priority-driven scheduler
  For real-time class, do round robin within each priority
  For variable class, do multiple queue

 Multiprocessor scheduling
  For N processors, run N-1 highest priority threads on N-1

processors and run remaining threads on a single processor
  A thread will wait for processors in its affinity set, if there are

other threads available (for variable priorities)

26

Summary

  Different scheduling goals
  Depend on what systems you build

  Scheduling algorithms
  Small time slice is important for improving I/O utilization
  STCF and SRTCF give the minimal average response time
  Priority and its variations are in most systems
  Lottery is flexible
  Real-time depends on admission control

