
COS 318: Operating Systems

CPU Scheduling

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

  CPU scheduling basics
  CPU Scheduling algorithms

When to Schedule?

  Process/thread creation
  Process/thread exit
  Blocking on I/O or synchronization
  I/O interrupt
  Clock interrupt (pre-emptive scheduling)

3

4

Preemptive vs. Non-Preemptive Scheduling

  Preemptive
scheduling
  Running ⇒ ready
  Blocked ⇒ ready
  Running ⇒ blocked
  Terminate

  Non-preemptive
scheduling
  Running ⇒ blocked
  Terminate

  Batch vs interactive
vs real-time

Running

Blocked
Ready

Resource free,
I/O completion interrupt

(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

Scheduling Criteria
  Assumptions

  One program per user and one thread per program
  Programs are independent

  Goals for batch and interactive systems
  Provide fairness
  Everyone makes some progress; no one starves
  Maximize CPU utilization

•  Not including idle process
  Maximize throughput

•  Operations/second (min overhead, max resource utilization)
  Minimize turnaround time

•  Batch jobs: time to execute (from submission to completion)
  Shorten response time

•  Interactive jobs: time response (e.g. typing on a keyboard)
  Proportionality

•  Meets user’s expectations

Scheduling Criteria

  Questions:
  What are the goals for PCs versus servers?
  Average response time vs. throughput
  Average response time vs. fairness

7

Problem Cases

  Completely blind about job types
  No CPU and I/O overlap.

  Optimization involves favoring jobs of type “A” over “B”
  Lots of A’s? B’s starve.

  Interactive process trapped behind others
  Response time bad for no good reason.

  Priorities: A depends on B and A’s priority > B’s
  B never runs.

Scheduling Algorithms

  Simplified view of scheduling:
  Save process state (to PCB)
  Pick which process to run next
  Dispatch process

8

First-Come-First-Serve (FCFS) Policy

  What does it mean?
  Run to completion (old days)
  Run until blocked or yields

  Example 1
  P1 = 24sec, P2 = 3sec, and P3 = 3sec, submitted together
  Average response time = (24 + 27 + 30) / 3 = 27

  Example 2
  Same jobs but come in different order: P2, P3 and P1
  Average response time = (3 + 6 + 30) / 3 = 13

P1 P2 P3

P2 P3 P1

(Gantt Graph)

STCF and SRTCF

 Shortest Time to Completion First
  Non-preemptive

 Shortest Remaining Time to Completion First
  Preemptive version

 Example
  P1 = 6sec, P2 = 8sec, P3 = 7sec, P4 = 3sec
  All arrive at the same time

 Can you do better than SRTCF in terms of average
response time?

  Issues with this approach?

P1 P2 P3 P4

Round Robin

  Similar to FCFS, but add a time slice for timer interrupt
  FCFS for preemptive scheduling
  Real systems also have I/O interrupts in the mix

  How do you choose time slice?

Current
process

FCFS vs. Round Robin

  Example
  10 jobs and each takes 100 seconds

  FCFS (non-preemptive scheduling)
  job 1: 100s, job2: 200s, ... , job10: 1000s

  Round Robin (preemptive scheduling)
  time slice 1sec and no overhead
  job1: 991s, job2: 992s, ... , job10: 1000s

  Comparisons
  Round robin is much worse (turnaround time) for jobs about

the same length
  Round robin is better for short jobs

Resource Utilization Example

  A, B, and C run forever (in this order)
  A and B each uses 100% CPU forever
  C is a CPU plus I/O job (1ms CPU + 10ms disk I/O)

  Time slice 100ms
  A (100ms CPU), B (100ms CPU), C (1ms CPU + 10ms I/O),

…

  Time slice 1ms
  A (1ms CPU), B (1ms CPU), C (1ms CPU),

A (1ms CPU), B (1ms CPU), C(10ms I/O) || A, B, …, A, B

  What do we learn from this example?

14

Virtual Round Robin

  Aux queue is FIFO
  I/O bound processes go

to aux queue (instead
of ready queue) to get
scheduled

  Aux queue has
preference over ready
queue

CPU Admit

Timeout

Dispatch

I/O wait

I/O wait

I/O wait

Aux queue

I/O
 c

om
pl

et
io

n

15

Priority Scheduling

 Obvious
  Not all processes are equal, so rank them

 The method
  Assign each process a priority
  Run the process with highest priority in the ready queue first
  Adjust priority dynamically (I/O wait raises the priority, reduce

priority as process runs)
 Why adjusting priorities dynamically

  T1 at priority 4, T2 at priority 1 and T2 holds lock L
  Scenario

•  T1 tries to acquire L, fails, blocks.
•  T3 enters system at priority 3.
•  T2 never gets to run!

Multiple Queues

  Jobs start at highest priority queue
  If timeout expires, drop one level
  If timeout doesn’t expires, stay or pushup one level

  What does this method do?

Priority
4
3
2
1

Time slices
1
2
4
8

Lottery Scheduling

  Motivations
  SRTCF does well with average response time, but unfair

  Lottery method
  Give each job a number of tickets
  Randomly pick a winning tickets
  To approximate SRTCF, give short jobs more tickets
  To avoid starvation, give each job at least one ticket
  Cooperative processes can exchange tickets

  Question
  How do you compare this method with priority scheduling?

18

Multiprocessor and Cluster

Multiprocessor architecture
  Cache coherence
  Single OS

Cluster or multicomputer
  Distributed memory
  An OS in each box

…
CPU

L1 $

L2 $

CPU

L1 $

L2 $

…

Memory Network

19

Multiprocessor/Cluster Scheduling

 Design issue
  Process/thread to processor assignment

 Gang scheduling (co-scheduling)
  Threads of the same process will run together
  Processes of the same application run together

 Dedicated processor assignment
  Threads will be running on specific processors to completion
  Is this a good idea?

20

Real-Time Scheduling

 Two types of real-time
  Hard deadline

•  Must meet, otherwise can cause fatal error
  Soft Deadline

•  Meet most of the time, but not mandatory

 Admission control
  Take a real-time process only if the system can guarantee the

“real-time” behavior of all processes
  The jobs are schedulable, if the following holds:

 where Ci = computation time, and Ti = period

∑ Ci
Ti

≤ 1

21

Rate Monotonic Scheduling (Liu & Layland 73)

  Assumptions
  Each periodic process must complete within its period
  No process is dependent on any other process
  Each process needs the same amount of CPU time on each

burst
  Non-periodic processes have no deadlines
  Process preemption occurs instantaneously (no overhead)

  Main ideas of RMS
  Assign each process a fixed priority = frequency of occurrence
  Run the process with highest priority
  Prove to be optimal

  Example
  P1 runs every 30ms gets priority 33 (33 times/sec)
  P2 runs every 50ms gets priority 20 (20 times/sec)

22

Earliest Deadline Scheduling

 Assumptions
  When a process needs CPU time, it announces its deadline
  No need to be periodic process
  CPU time needed may vary

 Main idea of EDS
  Sort ready processes by their deadlines
  Run the first process on the list (earliest deadline first)
  When a new process is ready, it preempts the current one if its

deadline is closer
 Example

  P1 needs to finish by 30sec, P2 by 40sec and P3 by 50sec
  P1 goes first
  More in MOS 7.4.4

23

4.3 BSD Scheduling with Multi-Queue

  “1 sec” preemption
  Preempt if a process doesn’t block or complete within 1

second
  Priority is recomputed every second

  Pi = base + (CPUi-1) / 2 + nice, where CPUi = (Ui + CPUi-1) / 2
  Base is the base priority of the process
  Ui is process utilization in interval i

  Priorities
  Swapper
  Block I/O device control
  File operations
  Character I/O device control
  User processes

24

Linux Scheduling

  Time-sharing scheduling
  Each process has a priority and # of credits
  I/O event will raise the priority
  Process with the most credits will run next
  A timer interrupt causes a process to lose a credit
  If no process has credits, then the kernel issues credits to all

processes: credits = credits/2 + priority

  Real-time scheduling
  Soft real-time
  Kernel cannot be preempted by user code

25

Windows Scheduling

 Classes and priorities
  Real time: 16 static priorities
  Variable: 16 variable priorities, start at a base priority

•  If a process has used up its quantum, lower its priority
•  If a process waits for an I/O event, raise its priority

 Priority-driven scheduler
  For real-time class, do round robin within each priority
  For variable class, do multiple queue

 Multiprocessor scheduling
  For N processors, run N-1 highest priority threads on N-1

processors and run remaining threads on a single processor
  A thread will wait for processors in its affinity set, if there are

other threads available (for variable priorities)

26

Summary

  Different scheduling goals
  Depend on what systems you build

  Scheduling algorithms
  Small time slice is important for improving I/O utilization
  STCF and SRTCF give the minimal average response time
  Priority and its variations are in most systems
  Lottery is flexible
  Real-time depends on admission control

