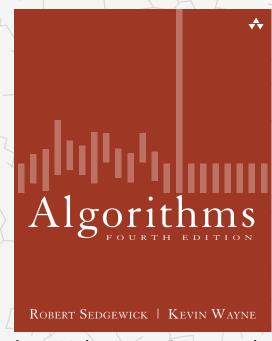
Algorithms



http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

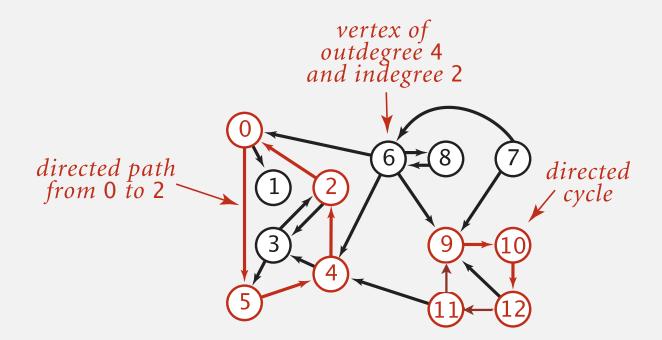
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

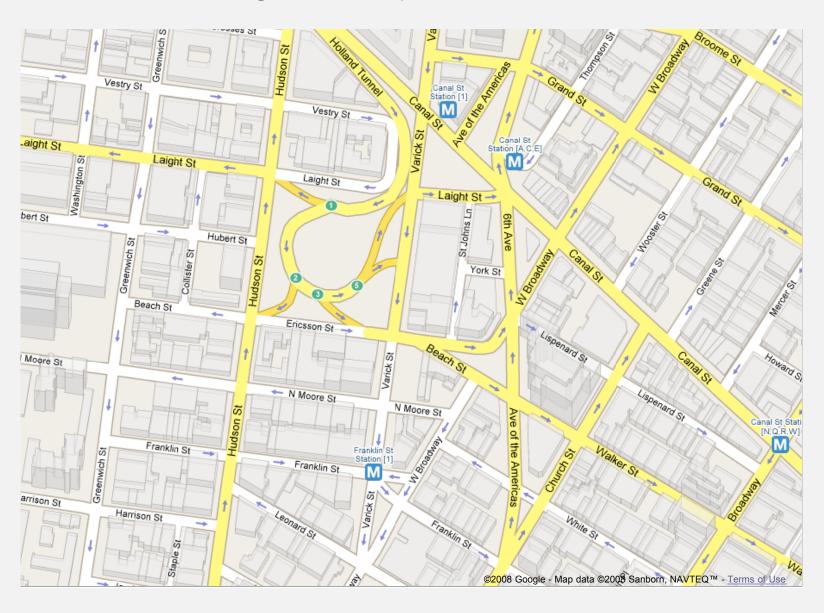
Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.



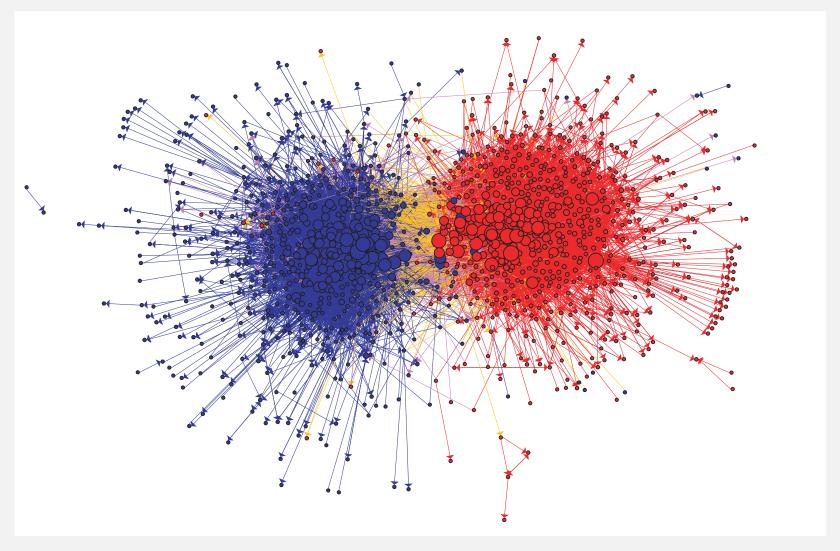
Road network

Vertex = intersection; edge = one-way street.



Political blogosphere graph

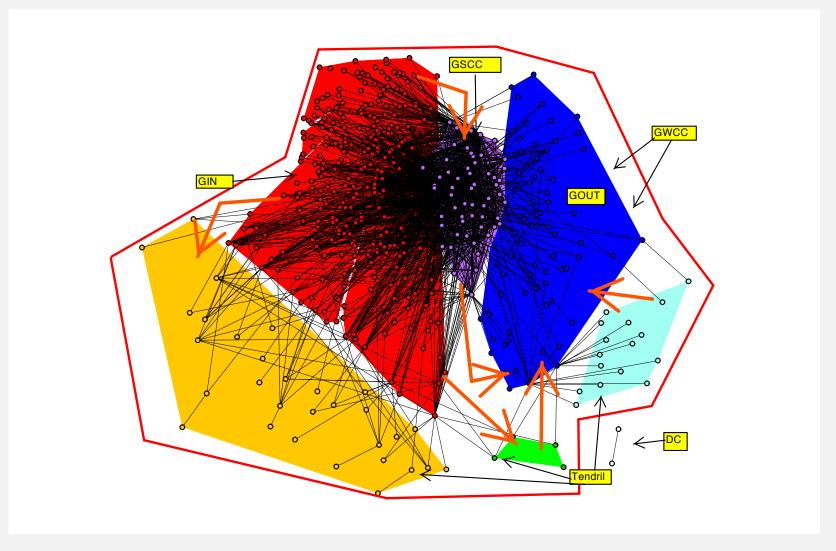
Vertex = political blog; edge = link.



The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

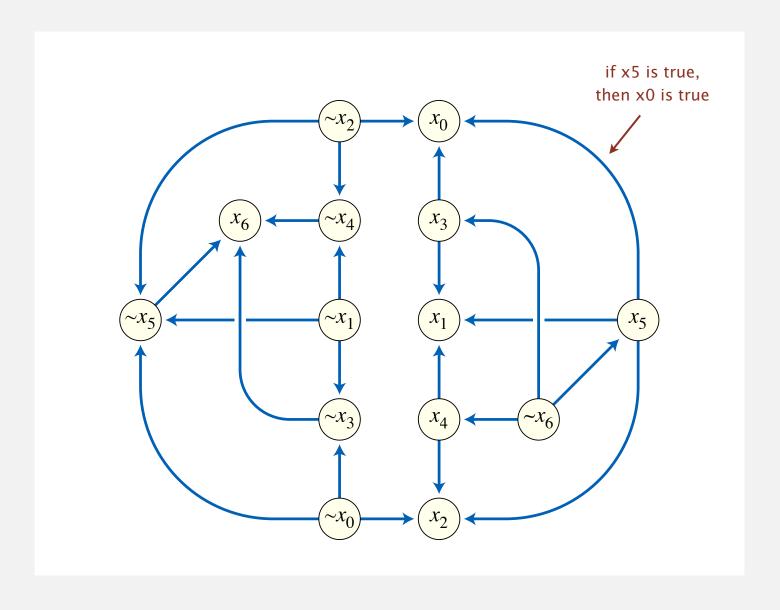
Vertex = bank; edge = overnight loan.



The Topology of the Federal Funds Market, Bech and Atalay, 2008

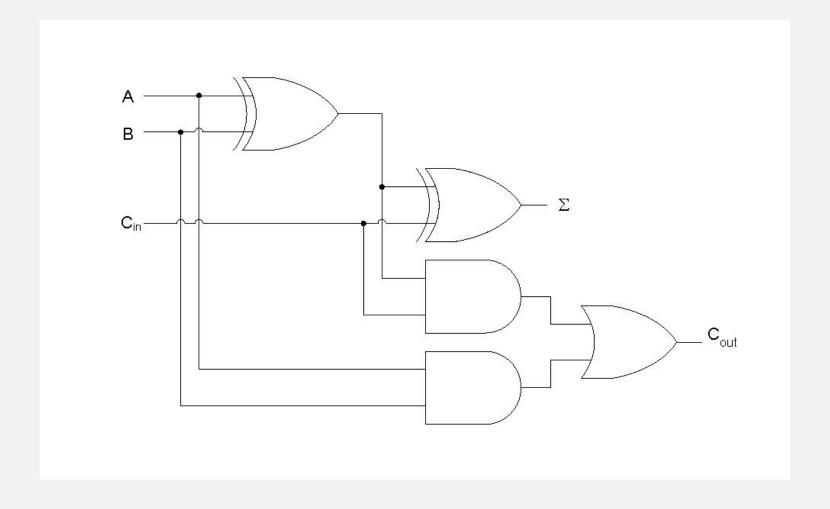
Implication graph

Vertex = variable; edge = logical implication.



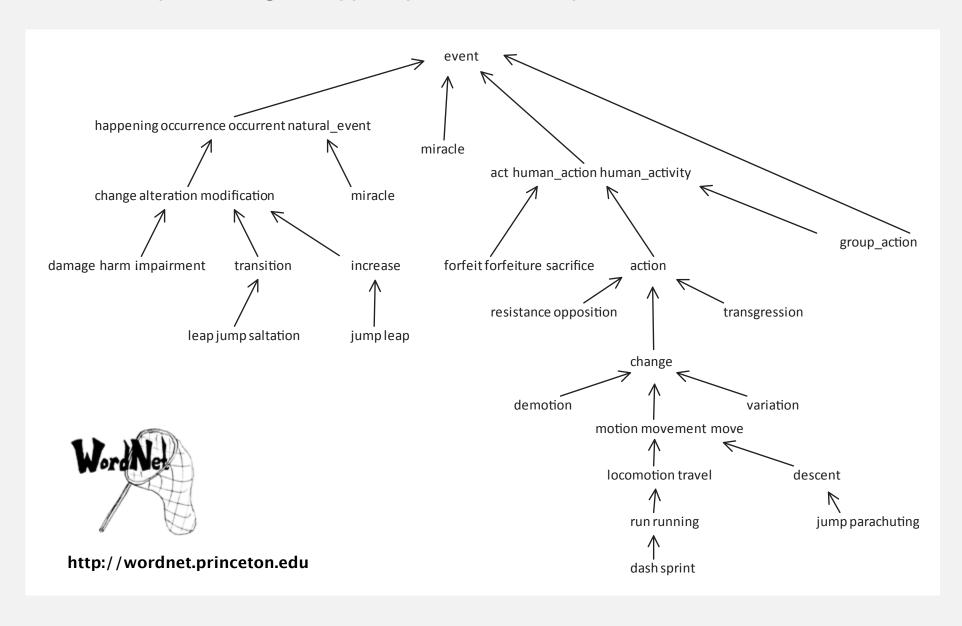
Combinational circuit

Vertex = logical gate; edge = wire.



WordNet graph

Vertex = synset; edge = hypernym relationship.

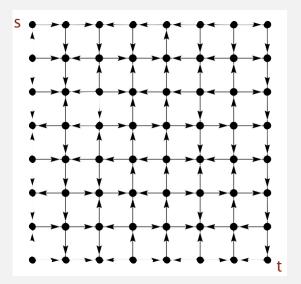


Digraph applications

digraph	vertex	directed edge
transportation	street intersection	one-way street
web	web page	hyperlink
food web	species	predator-prey relationship
WordNet	synset	hypernym
scheduling	task	precedence constraint
financial	bank	transaction
cell phone	person	placed call
infectious disease	person	infection
game	board position	legal move
citation	journal article	citation
object graph	object	pointer
inheritance hierarchy	class	inherits from
control flow	code block	jump

Some digraph problems

Path. Is there a directed path from s to t?



Shortest path. What is the shortest directed path from *s* to *t*?

Topological sort. Can you draw a digraph so that all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices v and w is there a path from v to w?

PageRank. What is the importance of a web page?

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

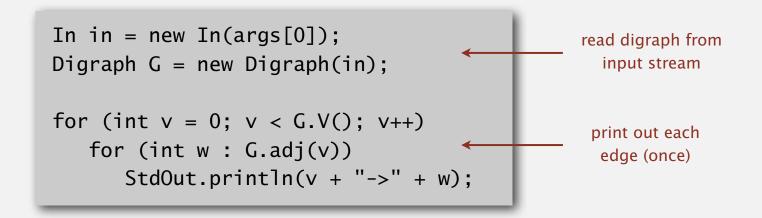
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

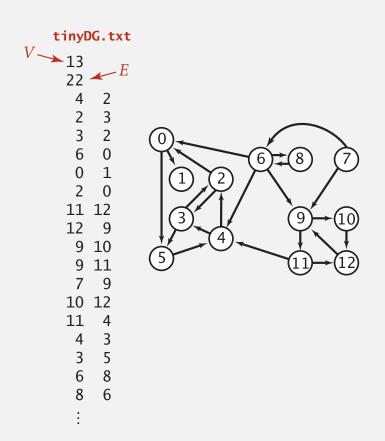
http://algs4.cs.princeton.edu

Digraph API

```
public class Digraph
                       Digraph(int V)
                                                           create an empty digraph with V vertices
                       Digraph(In in)
                                                             create a digraph from input stream
                void addEdge(int v, int w)
                                                                 add a directed edge v \rightarrow w
Iterable<Integer> adj(int v)
                                                                  vertices pointing from v
                 int V()
                                                                    number of vertices
                 int E()
                                                                    number of edges
            Digraph reverse()
                                                                  reverse of this digraph
              String toString()
                                                                   string representation
```



Digraph API



```
% java Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
:
11->4
11->12
12-9
```

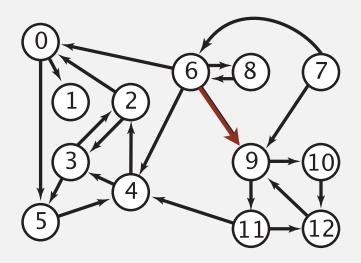
```
In in = new In(args[0]);
Digraph G = new Digraph(in);

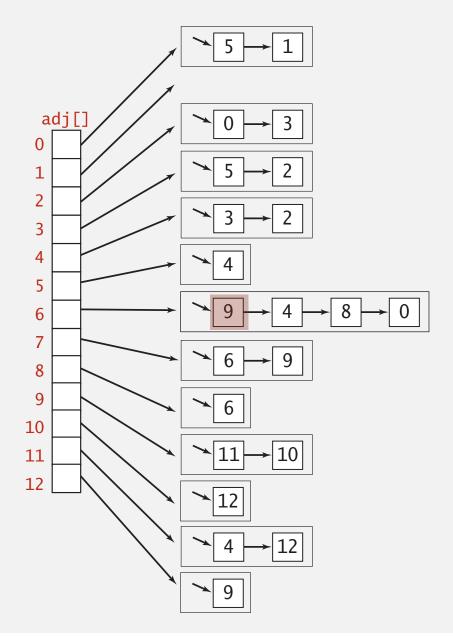
for (int v = 0; v < G.V(); v++)
  for (int w : G.adj(v))
    StdOut.println(v + "->" + w);
read digraph from input stream

print out each edge (once)
```

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.





Adjacency-lists graph representation (review): Java implementation

```
public class Graph
   private final int V;
   private final Bag<Integer>[] adj;
                                                     adjacency lists
   public Graph(int V)
                                                     create empty graph
                                                     with V vertices
      this.V = V;
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<Integer>();
                                                     add edge v-w
   public void addEdge(int v, int w)
      adi[v].add(w);
      adj[w].add(v);
                                                     iterator for vertices
   public Iterable<Integer> adj(int v)
                                                     adjacent to v
   { return adj[v]; }
```

Adjacency-lists digraph representation: Java implementation

```
public class Digraph
   private final int V;
   private final Bag<Integer>[] adj;
                                                     adjacency lists
   public Digraph(int V)
                                                     create empty digraph
                                                     with V vertices
      this.V = V;
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<Integer>();
                                                     add edge v→w
   public void addEdge(int v, int w)
      adi[v].add(w);
                                                     iterator for vertices
   public Iterable<Integer> adj(int v)
                                                     pointing from v
   { return adj[v]; }
```

Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.

representation	space	insert edge from v to w	edge from v to w?	iterate over vertices pointing from v?
list of edges	Е	1	E	E
adjacency matrix	V ²	1 †	1	V
adjacency lists	E + V	1	outdegree(v)	outdegree(v)

† disallows parallel edges

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

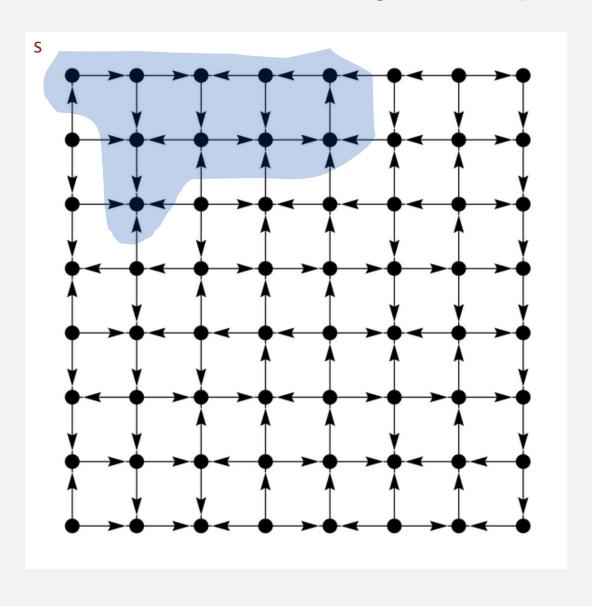
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Reachability

Problem. Find all vertices reachable from s along a directed path.



Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

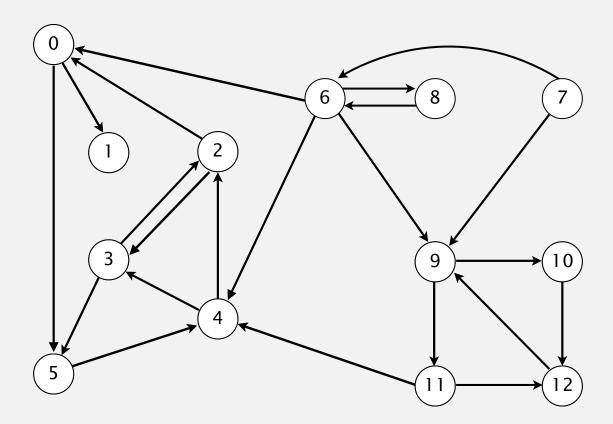
Mark v as visited.

Recursively visit all unmarked vertices w pointing from v.

Depth-first search demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.



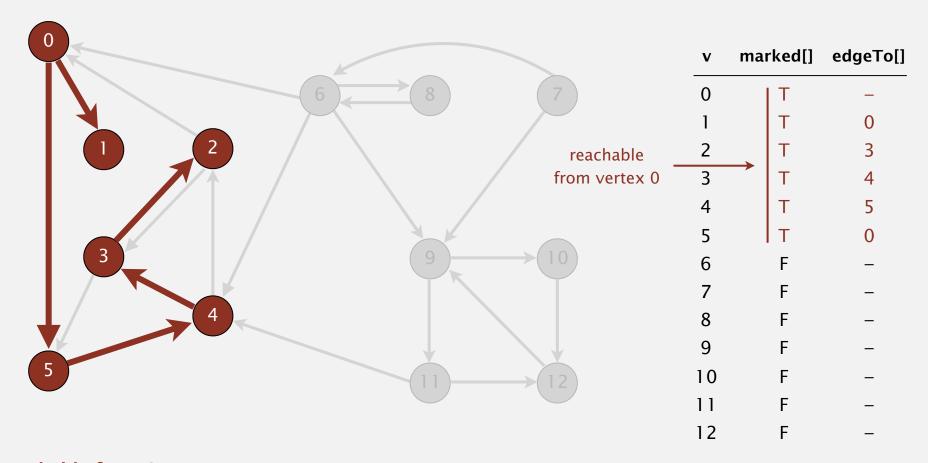
a directed graph

- 4→2
- 2→3
- 3→2
- 6→0
- $0\rightarrow 1$
- 2→0
- 11→12
- 12→9
- 9→10
- 9→11
- 8→9
- 10→12
- 11→4
- 4→3
- 3→5
- 6→8
- 8→6
- 5→4
- 0→5
- 6→4
- 6→9
- 7→6

Depth-first search demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.



Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```
public class DepthFirstSearch
   private boolean[] marked;
                                                          true if path to s
   public DepthFirstSearch(Graph G, int s)
                                                           constructor marks
      marked = new boolean[G.V()];
                                                           vertices connected to s
      dfs(G, s);
                                                           recursive DFS does the work
   private void dfs(Graph G, int v)
      marked[v] = true;
      for (int w : G.adj(v))
          if (!marked[w]) dfs(G, w);
                                                           client can ask whether any
   public boolean visited(int v)
                                                          vertex is connected to s
      return marked[v]; }
```

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one. [substitute Digraph for Graph]

```
public class DirectedDFS
   private boolean[] marked;
                                                           true if path from s
   public DirectedDFS(Digraph G, int s)
                                                           constructor marks
      marked = new boolean[G.V()];
                                                           vertices reachable from s
      dfs(G, s);
                                                           recursive DFS does the work
   private void dfs(Digraph G, int v)
      marked[v] = true;
      for (int w : G.adj(v))
          if (!marked[w]) dfs(G, w);
                                                           client can ask whether any
   public boolean visited(int v)
                                                           vertex is reachable from s
      return marked[v]; }
```

Reachability application: program control-flow analysis

Every program is a digraph.

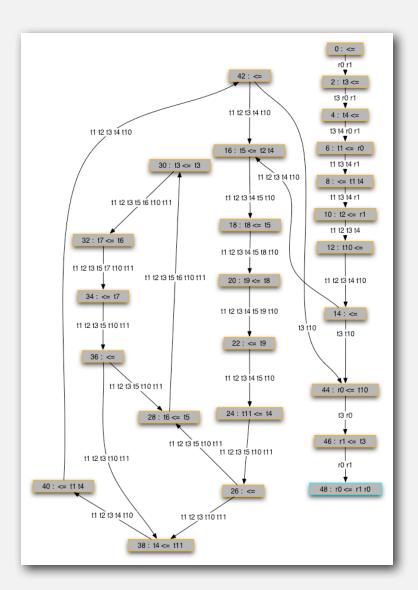
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.



Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

roots

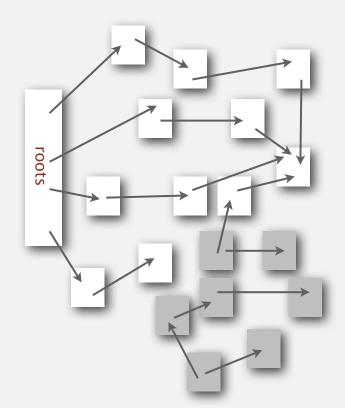
Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).



Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

- ✓ Reachability.
 - Path finding.
 - Topological sort.
 - Directed cycle detection.

Basis for solving difficult digraph problems.

- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components.

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited. Repeat until the queue is empty:

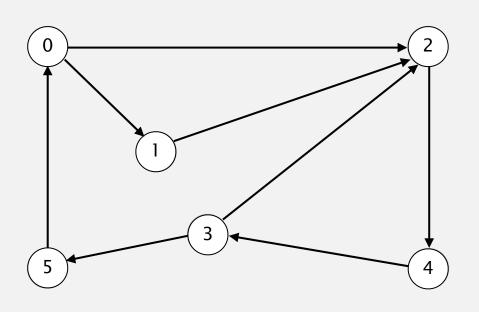
- remove the least recently added vertex v
- for each unmarked vertex pointing from v: add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to E + V.

Directed breadth-first search demo

Repeat until queue is empty:

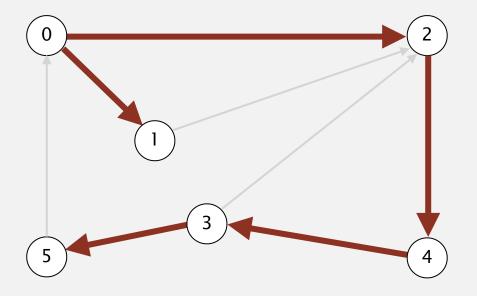
- Remove vertex *v* from queue.
- Add to queue all unmarked vertices pointing from v and mark them.



Directed breadth-first search demo

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices pointing from v and mark them.



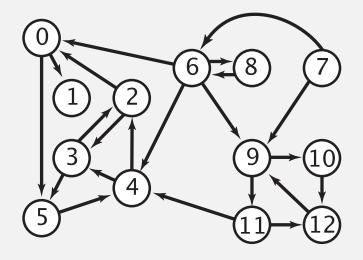
V	edgeTo[]	distTo[]
0	_	0
1	0	1
2	0	1
3	4	3
4	2	2
5	3	4

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex.
$$S = \{1, 7, 10\}.$$

- Shortest path to 4 is $7 \rightarrow 6 \rightarrow 4$.
- Shortest path to 5 is $7 \rightarrow 6 \rightarrow 0 \rightarrow 5$.
- Shortest path to 12 is $10\rightarrow 12$.
- ...



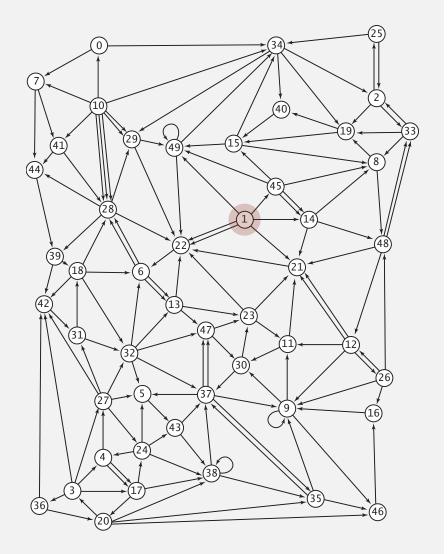
- Q. How to implement multi-source shortest paths algorithm?
- A. Use BFS, but initialize by enqueuing all source vertices.

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]

- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).



Q. Why not use DFS?

Bare-bones web crawler: Java implementation

```
Queue<String> queue = new Queue<String>();
                                                              queue of websites to crawl
SET<String> marked = new SET<String>();
                                                              set of marked websites
String root = "http://www.princeton.edu";
queue.enqueue(root);
                                                              start crawling from root website
marked.add(root);
while (!queue.isEmpty())
   String v = queue.dequeue();
                                                               read in raw html from next
   StdOut.println(v);
                                                              website in queue
   In in = new In(v);
   String input = in.readAll();
   String regexp = \frac{http:}{(\w+\.)*(\w+)"};
   Pattern pattern = Pattern.compile(regexp);
                                                              use regular expression to find all URLs
   Matcher matcher = pattern.matcher(input);
                                                              in website of form http://xxx.yyy.zzz
   while (matcher.find())
                                                              [crude pattern misses relative URLs]
      String w = matcher.group();
      if (!marked.contains(w))
          marked.add(w);
                                                              if unmarked, mark it and put
          queue.enqueue(w);
                                                              on the queue
```

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

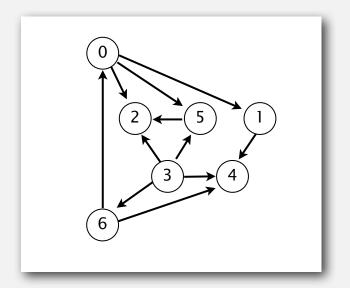
http://algs4.cs.princeton.edu

Precedence scheduling

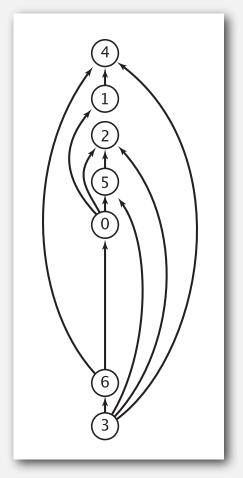
Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

- 0. Algorithms
- 1. Complexity Theory
- 2. Artificial Intelligence
- 3. Intro to CS
- 4. Cryptography
- 5. Scientific Computing
- 6. Advanced Programming



precedence constraint graph



feasible schedule

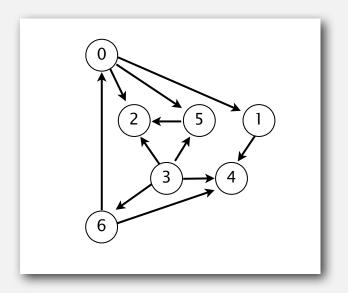
Topological sort

DAG. Directed acyclic graph.

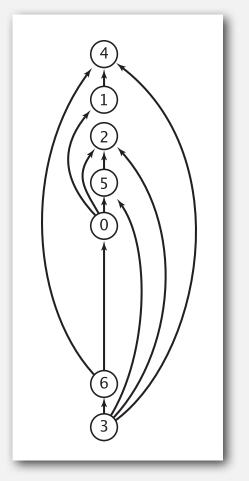
Topological sort. Redraw DAG so all edges point upwards.

$$0 \rightarrow 5$$
 $0 \rightarrow 2$
 $0 \rightarrow 1$ $3 \rightarrow 6$
 $3 \rightarrow 5$ $3 \rightarrow 4$
 $5 \rightarrow 4$ $6 \rightarrow 4$
 $6 \rightarrow 0$ $3 \rightarrow 2$
 $1 \rightarrow 4$

directed edges



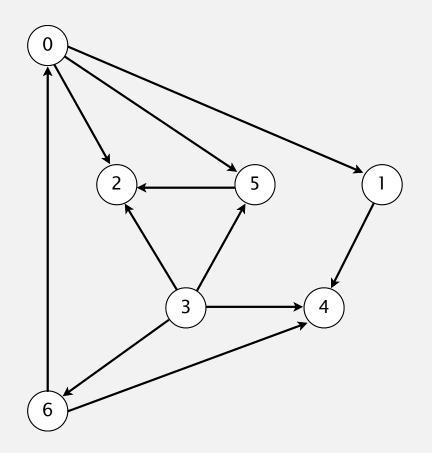
DAG



Solution. DFS. What else?

Topological sort demo

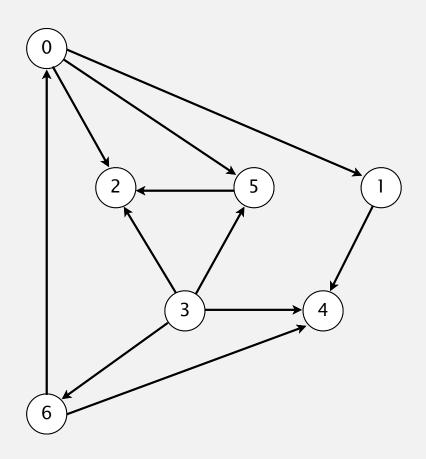
- Run depth-first search.
- Return vertices in reverse postorder.



0→5
0→2
0→1
3→6
3→5
3→4
5→4
6→4
6→0
3→2
1→4

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.



postorder

4 1 2 5 0 6 3

topological order

3 6 0 5 2 1 4

done

Depth-first search order

```
public class DepthFirstOrder
   private boolean[] marked;
   private Stack<Integer> reversePost;
   public DepthFirstOrder(Digraph G)
      reversePost = new Stack<Integer>();
      marked = new boolean[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v]) dfs(G, v);
   private void dfs(Digraph G, int v)
      marked[v] = true;
      for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w);
      reversePost.push(v);
   public Iterable<Integer> reversePost()
   { return reversePost; }
```

returns all vertices in "reverse DFS postorder"

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v \rightarrow w$. When dfs(v) is called:

- Case 1: dfs(w) has already been called and returned.
 Thus, w was done before v.
- Case 2: dfs(w) has not yet been called.
 dfs(w) will get called directly or indirectly
 by dfs(v) and will finish before dfs(v).
 Thus, w will be done before v.
- Case 3: dfs(w) has already been called,
 but has not yet returned.
 Can't happen in a DAG: function call stack contains path from w to v, so v→w would complete a cycle.

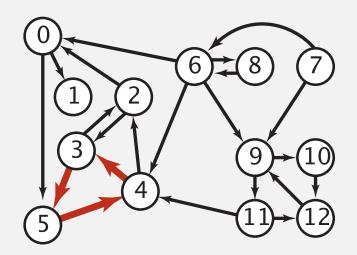
dfs(1)dfs(4)4 done 1 done dfs(2)2 done dfs(5)check 2 5 done 0 done check 1 v = 3 — 3 done check 4 check 5 check 6 done

dfs(0)

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle. Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.



a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle. Solution. DFS. What else? See textbook.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

PAGE 3			
DEPARTMENT	COURSE	DESCRIPTION	PREREQS
COMPUTER SCIENCE		INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.	CPSC 432
00	0000 1100	MOLECULA COMMITTE DESCRIPTION	O. 171 101

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

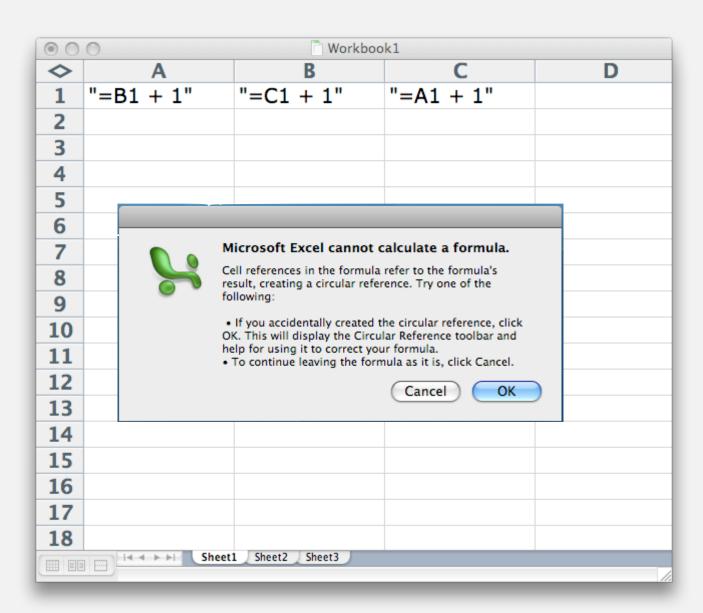
```
public class A extends B
{
    ...
}
```

```
public class B extends C
{
    ...
}
```

```
public class C extends A
{
    ...
}
```

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)



4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

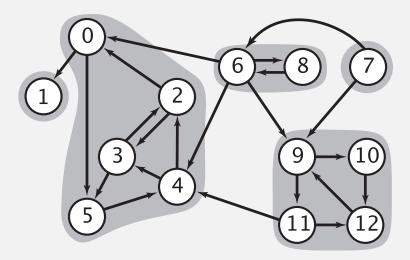
Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

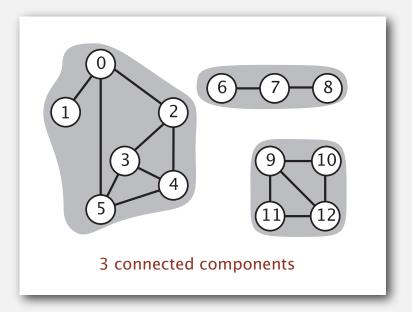
- *v* is strongly connected to *v*.
- If v is strongly connected to w, then w is strongly connected to v.
- If *v* is strongly connected to *w* and *w* to *x*, then *v* is strongly connected to *x*.

Def. A strong component is a maximal subset of strongly-connected vertices.

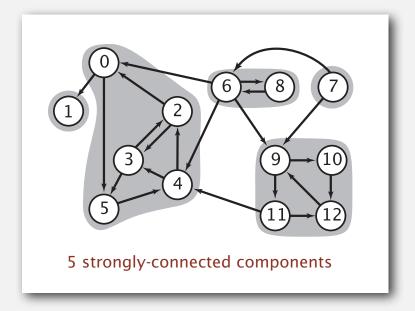


Connected components vs. strongly-connected components

v and w are connected if there is a path between v and w



v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v



connected component id (easy to compute with DFS)

public int connected(int v, int w)
{ return cc[v] == cc[w]; }

constant-time client connectivity query

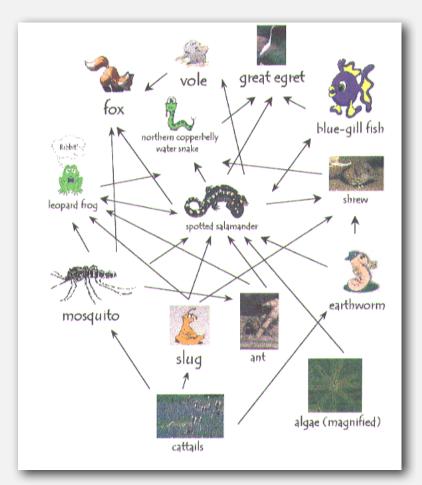
strongly-connected component id (how to compute?)

```
public int stronglyConnected(int v, int w)
{ return scc[v] == scc[w]; }
```

constant-time client strong-connectivity query

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.



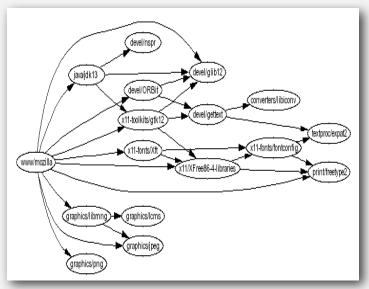
http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

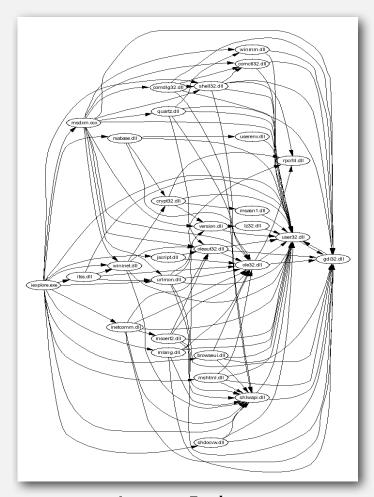
Strong component application: software modules

Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.



Firefox



Internet Explorer

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.

Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

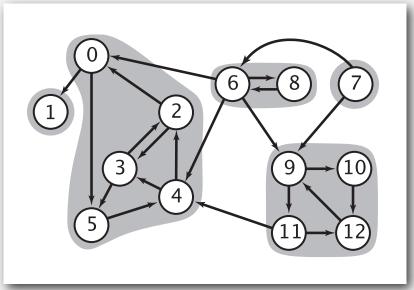
Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G^R .

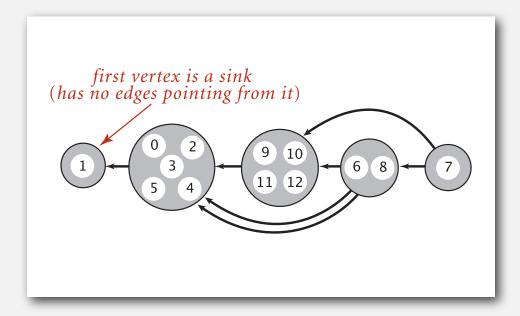
Kernel DAG. Contract each strong component into a single vertex.

Idea.

- how to compute?
- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.



digraph G and its strong components

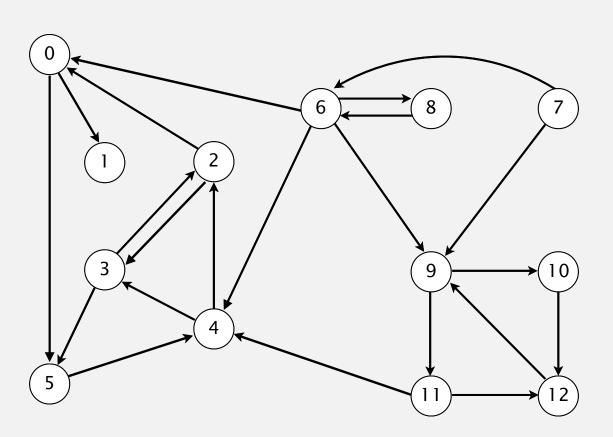


kernel DAG of G (in reverse topological order)

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R .

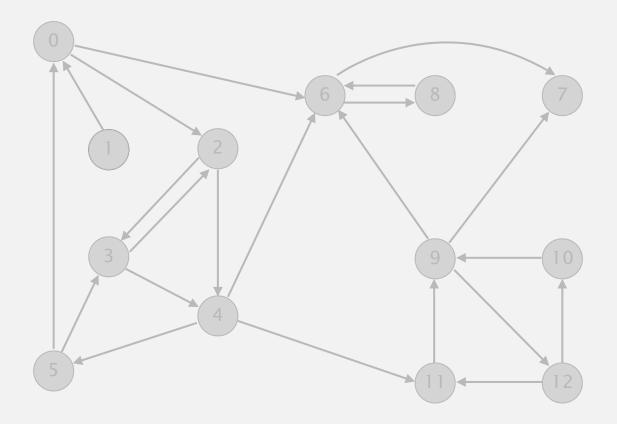
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R .



Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R .

1 0 2 4 5 3 11 9 12 10 6 7 8

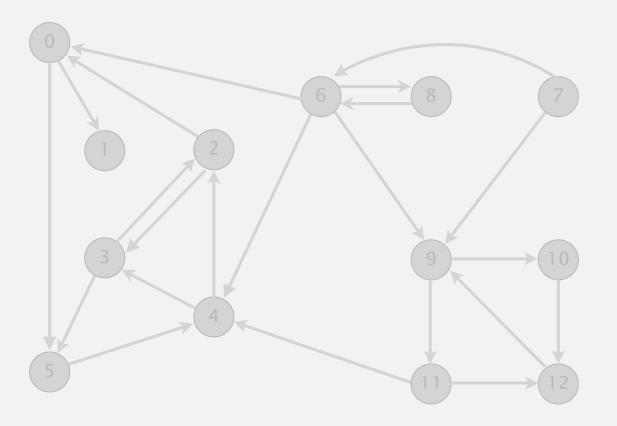


reverse digraph GR

Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R .

1 0 2 4 5 3 11 9 12 10 6 7 8



	SCC[]	
0	1	
1	0	
2	1	
3	1	
4	1	
5	1	
6	3	
7	4	
8	3	
9	2	
10	2	
11	2	
12	2	

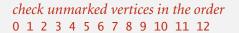
done

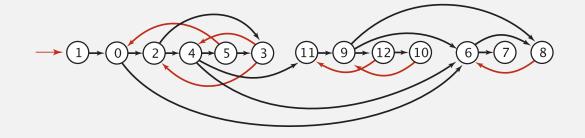
Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G^R 0 1 2 6 8 7 9 10 5





reverse postorder for use in second dfs()
1 0 2 4 5 3 11 9 12 10 6 7 8

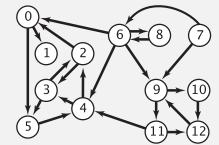
```
dfs(0)
  dfs(6)
    dfs(8)
    check 6
    8 done
    dfs(7)
    7 done
  6 done
  dfs(2)
    dfs(4)
      dfs(11)
        dfs(9)
          dfs(12)
            check 11
            dfs(10)
              check 9
            10 done
          12 done
          check 7
          check 6
```

Kosaraju-Sharir algorithm

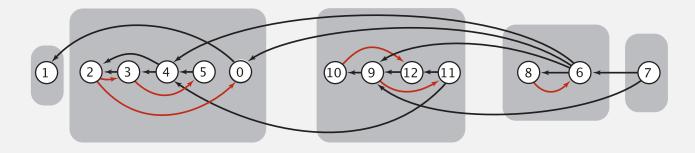
Simple (but mysterious) algorithm for computing strong components.

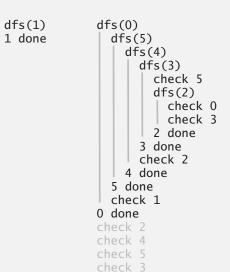
- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G



check unmarked vertices in the order 1 0 2 4 5 3 11 9 12 10 6 7 8





Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to E + V.

Pf.

- Running time: bottleneck is running DFS twice (and computing GR).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!

Connected components in an undirected graph (with DFS)

```
public class CC
   private boolean marked[];
   private int[] id;
   private int count;
   public CC(Graph G)
      marked = new boolean[G.V()];
      id = new int[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v])
            dfs(G, v);
            count++;
      }
   }
   private void dfs(Graph G, int v)
      marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   }
   public boolean connected(int v, int w)
   { return id[v] == id[w]; }
```

Strong components in a digraph (with two DFSs)

```
public class KosarajuSharirSCC
   private boolean marked[];
   private int[] id;
   private int count;
   public KosarajuSharirSCC(Digraph G)
      marked = new boolean[G.V()];
      id = new int[G.V()];
      DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
      for (int v : dfs.reversePost())
         if (!marked[v])
            dfs(G, v);
            count++;
      }
   }
   private void dfs(Digraph G, int v)
      marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   }
   public boolean stronglyConnected(int v, int w)
   { return id[v] == id[w]; }
```

Digraph-processing summary: algorithms of the day

