ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

4.2 DIRECTED GRAPHS

» introduction

4.2 DIRECTED GRAPHS

» introduction
» digraph API
» digraph search AlgO rithms

Algorithms ,
SR » topological sort
» sfrong components
g p ROBERT SEDGEWICK | KEVIN WAYNE
http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Directed graphs Road network
Digraph. Set of vertices connected pairwise by directed edges. Vertex = intersection; edge = one-way street.
g 3 . N .
t g | & 5 L
H s % = & & @'P 4
= sty 50 g ¢ L= S Lo 9
Vestry ¢ = E 0»;0/ 3 Canals f@ e”"s,) -~
t f Vestry st \) ”%} [t /
- t B N\ [l
-aight St = 5\ statonjac /) S
vertex of s Laightst 5 K /,
g Lai
outdegree 4 : f A o= S Yan,
and indegree 2 r—/ t o =l 7 5 5
= . — Hubert gy Yo £ z fw N
K & [\ 5 RPN S
H 5 2 % York st S Y s
$ 35 g 2 o & 4 & >
~ SO 0, ot DA S A
directed path @ 9 directed pray ——= N / / ¢
Encsson st —,
from 0 to 2 ~ / cycle f ’ e AR
Moore st 8 y % “,,
@ « Y&
= N Moore ‘s
' 5 e St o 4 p,”er’ /
< HIES S Canal 5t Stats
@/ @ 1§ H S NGRW
- Frankin s~/ F 5/
g = Frankin gy — g S ey, Y
s 2\ x)
arison s oL N IS 5
anison st L, &
Mo Y, e X
N N
v,
©2008 Google - Map data muqs\ 'Sanborit, NAVTEQ™ - Terms of Use

Staple g

Political blogosphere graph Overnight interbank loan graph

Vertex = political blog; edge = link. Vertex = bank; edge = overnight loan.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005 The Topology of the Federal Funds Market, Bech and Atalay, 2008
5
Implication graph Combinational circuit
Vertex = variable; edge = logical implication. Vertex = logical gate; edge = wire.
if x5 is true,

then x0 is true

/ "

out

()

WordNet graph

Vertex = synset; edge = hypernym relationship.

event
happeningoccurrence occurrent natural_event
miracle
act human_action human_activity
change alteration modification miracle \
group_action
damage harm impairment transition increase forfeitforfeiture sacrifice action
resistance opposition transgression
leap jump saltation jumpleap
change
demotion variation

motion movement move

locomotion travel descent

runrunning jump parachuting

http://wordnet.princeton.edu dashssprint

Some digraph problems

Path. Is there a directed path from s to ¢?

P @< @< @ >0<0 >0

!

P

e @< @ >0~ @ -0~ 4

Shortest path. What is the shortest directed path from sto ¢?

Topological sort. Can you draw a digraph so that all edges point upwards?
Strong connectivity. Is there a directed path between all pairs of vertices?
Transitive closure. For which vertices v and w is there a path from vto w?

PageRank. What is the importance of a web page?

Digraph applications

transportation
web
food web
WordNet
scheduling
financial
cell phone
infectious disease
game
citation
object graph
inheritance hierarchy

control flow

street intersection
web page
species
synset
task
bank
person
person
board position
journal article
object
class

code block

one-way street
hyperlink
predator-prey relationship
hypernym
precedence constraint
transaction
placed call
infection
legal move
citation
pointer
inherits from

Jjump

Algorithms

RoBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

» digraph API

Digraph API

public class Digraph

Digraph(int V) create an empty digraph with V vertices
Digraph(In in) create a digraph from input stream
void addEdge(int v, int w) add a directed edge v—>w
Iterable<Integer> adj(int v) vertices pointing from v
int VO number of vertices
int EQ number of edges
Digraph reverse() reverse of this digraph
String toString(Q) string representation
In in = new In(args[0]); read digraph from
Digraph G = new Digraph(in); | inputstream

for (int.v =0; v < q.V(); V++) 97 o Gl
for (int w : G.adj(v)) S edge (once)
StdOut.println(v + "->" + w);

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

adj[]

O 0w N OO VT W N = O

e

=
[

=
N

Digraph API

Adjacency-lists graph representation (review): Java implementation

% java Digraph tinyDG.txt

tinyDG. txt
\/\13 . 0->5

2) «—F 0->1
4 2 2->0
2 3
3 2 §7>§
6 0 ‘. >
0 1 @ e e e 3->2
2 0
11 12 4->3
12 o e 4->2
9 10 5->4
on O L1 :
7 9 :
10 12 11->4
11 ‘3‘ 11->12
3 s 12-9
6 8
8 6

In in = new In(args[0]); read digraph from

. . . - A

Digraph G = new Digraph(in); input stream

for (i nt.V =0; v< (f'-Vo; V+) print out each
for (int w : G.adj(v)) < edge (once)

StdOut.printinCv + "->" + w);

public class Graph

{

private final int V;
private final Bag<Integer>[] adj;

public Graph(int V)

{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; Vv++)
adj[v] = new Bag<Integer>();
}

public void addEdge(int v, int w)
{

adj[v].add(w);

adj[w].add(v);

public Iterable<Integer> adj(int v)
{ return adj[v]; 1}

<«—+— adjacency lists

create empty graph

—
with V vertices
<«—— add edge v-w
iterator for vertices
«—

adjacent to v

Adjacency-lists digraph representation: Java implementation Digraph representations

public class Digraph In practice. Use adjacency-lists representation.

{ » Algorithms based on iterating over vertices pointing from v.

private final int V; « Real-world digraphs tend to be sparse.

private final Bag<Integer>[] adj; <«—t— adjacency lists
\ huge number of vertices,
public Digraph(int V) small average vertex degree
{ | Create empty digraph
this.V = V: with V vertices
. = ’

adj = (Bag<Integer>[]) new Bag[V];

for (int v = 0; v < V; V++) ; ; ;
adj[v] = new Bag<Integer>(); e e insert edge edge from |tera_te _over vertices
} from v to w v to w? pointing from v?
E 1 E

- . list of edges E
public void addEdgeCint v, int w) <« 2ddedgev-w
{ adjacency matrix V2 1t 1 \"
adj[v].add(w);
adjacency lists E+V 1 outdegree(v) outdegree(v)
}

. L. iterator for vertices t disall llel ed
public Iterable<Integer> adj(int v) “TT pointing from v e
{ return adj[v]; }

}
17
Reachability

Problem. Find all vertices reachable from s along a directed path.

4.2 DIRECTED GRAPHS

Algorithms » digraph search

RoBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Depth-first search in digraphs Depth-first search demo

Same method as for undirected graphs. To visit a vertex v: @ 42

« Every undirected graph is a digraph (with edges in both directions). » Mark vertex v as visited. -

« DFS is a digraph algorithm. « Recursively visit all unmarked vertices pointing from v. 6—0

2—0
1112
12—-9
9-10

DFS (to visit a vertex v) 9—11

Mark v as visited. 10-12

Recursively visit all unmarked 11—4

vertices w pointing from v.

3-5
6—8

54
0-5
64

a directed graph 6—9
7—6

Depth-first search demo Depth-first search (in undirected graphs)

To visit a vertex v: Recall code for undirected graphs.
* Mark vertex v as visited.
» Recursively visit all unmarked vertices pointing from v.

public class DepthFirstSearch
{
v markedl] edgeToll private boolean[] marked; <«—F— trueifpathtos
0 T - public DepthFirstSearch(Graph G, int s)
! T 0 { . | constructor marks
‘ a reachable 2 T 3 marked = new boolean[G.V(Q]; vertices connected to s
f dfs(G, s);
rom vertex 0 3 T 4 ’ ’

4 T 5 ¥
Z : 0 private void dfs(Graph G, int v) <«——+— recursive DFS does the work

B {

\ 7 F - marked[v] = true;
° 8 F — for (int w : G.adj(v))
\4 9 E _ if (Imarked[w]) dfs(G, w);
10 F = 3
11 F = lient k wheth
public boolean visited(int v) —_—
12 F = vertex is connected to s
{ return marked[v]; }
reachable from 0 }

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute Digraph for Graph]

public class DirectedDFS
{
private boolean[] marked; <«——+— trueif path from s
public DirectedDFS(Digraph G, int s)
{ - constructor marks
:::rléed =)new boolean[G.VO)1; vertices reachable from s
s(G, s);
}
private void dfs(Digraph G, int v) <«———+— recursive DFS does the work
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w]) dfs(G, w);
}
lient k wheth
public boolean visited(int v) —_—
{ N ked[v] 7 vertex is reachable from s
return marked[v];
}

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
« Vertex = object.
« Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program

(starting at a root and following a chain of pointers). j

5

g J{?J

5=

51004

Reachability application: program control-flow analysis

Every program is a digraph.

« Vertex = basic block of instructions (straight-line program).

« Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.

wead

i

M =u

@B |

: <

nedsnom

‘ AN

\ 28: 16<= 15

/ sress T

neBu

16: 5= 214

nRBwIo

BB B
18: B 15
neBuEsBEI0

20: 818 HRB U0

T
artes

n2BEBH0

| e 0
wiineu oo
e gon wineo
hewsnom i
| o
»e ST

nBuo nesuom

381 1

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

o Mark: mark all reachable objects.

o Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

510014

P

j\j/r
-_j__jﬁ'/d
a2k

3{J—’J

j/'J

26

28

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

v« Reachability.
« Path finding.

« Topological sort.

« Directed cycle detection.

Basis for solving difficult digraph problems.

« 2-satisfiability.

« Directed Euler path.

« Strongly-connected components.

SIAM J. Cowrur
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANt

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and a algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
K,V + kyE + ky for some constants k, , k;, and k;, where Vi the number of vertices and E is the number
of edges of the graph being examined.

Directed breadth-first search demo

Repeat until queue is empty: @
* Remove vertex v from queue.

» Add to queue all unmarked vertices pointing from v and mark them.

tinyDG2. txt

vV —,

graph G

6

(o]

O W hORFRE WwNU

N UWwWRNNAAO N\\

-

31

Breadth-first search in digraphs

Same method as for undirected graphs.

« Every undirected graph is a digraph (with edges in both directions).

« BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v

- for each unmarked vertex pointing from v:

add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges)

from s to all other vertices in a digraph in time proportional to £+ V.

Directed breadth-first search demo

Repeat until queue is empty:

» Remove vertex v from queue.

« Add to queue all unmarked vertices pointing from v and mark them.

done

O

\%

30

edgeTo[] distTo[]

vi D W N —= O

w N M O O

AN W = =

32

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source
vertices, find shortest path from any vertex in the set to each other vertex.

O=0,
78
&

&

Ex. S=1{1,7,10}.
« Shortest path to 4 is 7—6—4.
« Shortest path to 5 is 7=6—0—5.
« Shortest path to 12 is 10—12.

&

Q. How to implement multi-source shortest paths algorithm?
A. Use BFS, but initialize by enqueuing all source vertices.

33

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>(Q); <«——+F—— queue of websites to crawl
SET<String> marked = new SET<String>Q); <«——F—— set of marked websites

String root = "http://www.princeton.edu";
queue.enqueue(root);
marked.add(root) ;

<«—+—— start crawling from root website

while (!queue.isEmpty())
{

String v = queue.dequeue();
StdOut.printin(v); e
In in = new In(v);

String input = in.readA110);

read in raw html from next
website in queue

String regexp = "http://O\\w+\\.)*\\w+)";
Pattern pattern = Pattern.compile(regexp);
Matcher matcher = pattern.matcher(input); -

while (matcher.find())

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz
[crude pattern misses relative URLs]

{
String w = matcher.group(Q);
if (!marked.contains(w))
{
marked.add(w) ; if unmarked, mark it and put
queue.enqueue(w) ; “"T1 onthe queue
}
}

3

35

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]
» Choose root web page as source s.
« Maintain a Queue of websites to explore.
« Maintain a SET of discovered websites.
« Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

34

4.2 DIRECTED GRAPHS

Algorithms

» topological sort

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Precedence scheduling Topological sort

Goal. Given a set of tasks to be completed with precedence constraints, DAG. Directed acyclic graph.
in which order should we schedule the tasks?

Topological sort. Redraw DAG so all edges point upwards.
Digraph model. vertex = task; edge = precedence constraint.

0. Algorithms d) 0—=5 0—2 d)
1. Complexity Theory @ 0—1 356 @
2. Artificial Intelligence - g) 3.5 34 i g)
3. Intro to CS @ /CS) o 5.4 64 @ /§> o
4. Cryptography %_»@ O, 6—0 3-2 e o ©
5. Scientific Computing 124
6. Advanced Programming
tasks precedence constraint graph directed edges DAG
Solution. DFS. What else?
feasible schedule = topological order
Topological sort demo Topological sort demo
« Run depth-first search. @ « Run depth-first search.
« Return vertices in reverse postorder. « Return vertices in reverse postorder.
0 0
0—5
0—2 postorder
0—1 412506 3
3—6
35 o topological order
3—4 360521 4
5—4
6—4
60 (®)
32
1-4

a directed acyclic graph done

Depth-first search order

Topological sort in a DAG: correctness proof

public class DepthFirstOrder

{

private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder(Digraph G)
{
reversePost = new Stack<Integer>();
marked = new boolean[G.V(Q];
for (int v = 0; v < G.VQ; v++)
if (!marked[v]) dfs(G, v);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (Imarked[w]) dfs(G, w);
reversePost.push(v);

3

public Iterable<Integer> reversePost()
{ return reversePost; }

——

Directed cycle detection

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w. When dfs(v) is called: d4fs(0)
S
dfs(1)
dfs(4)

o Case 1: dfs(w) has already been called and returned. 4 done

Thus, w was done before v. if:‘zgs
2 done
dfs(5)
o Case 2: dfs(w) has not yet been called.

5 done
dfs(w) will get called directly or indirectly 0 done

by dfs(v) and will finish before dfs(v).

Thus, w will be done before v. v=3 dfs(3)

case 1 <Y>

« Case 3: dfs(w) has already been called, case 2 — dfs(6)
6 done
but has not yet returned. 3 done

Can’t happen in a DAG: function call stack contains
returns all vertices in

“reverse DFS postorder” path from w to v, so v—w would complete a cycle. done

all vertices pointing from 3 are done before 3 is done,
M so they appear after 3 in topological order

Directed cycle detection application: precedence scheduling

Proposition. A digraph has a topological order iff no directed cycle.

Pf.

« If directed cycle, topological order impossible.
« If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.

Solution.

DFS. What else? See textbook.

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

PAGE 3

DEPARTMENT COURSE DESCRIPTION PREREQS

COMPUTER CPSC 432) INTERMEDIATE COMPLER | CPSC Y432

SCENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

43

42

44

Directed cycle detection application: cyclic inheritance Directed cycle detection application: spreadsheet recalculation

The Java compiler does cycle detection. Microsoft Excel does cycle detection (and has a circular reference toolbar!)
Workbook1
public class A extends B % javac A.java < - A - - B - - C - D
{ A.java:1l: cyclic inheritance 1 "=Bl1+1 =Cl1+1 =Al1+1
A involving A 2
} public class A extends B { } 3
A 4
1 error 5
pubTlic class B extends C 6 _
7 Microsoft Excel cannot calculate a formula.
{ 8 u Cell references in the formula refer to the formula's
@ result._ creating a circular reference. Try one of the
} 9 following

10 « If you accidentally created the circular reference, click
OK. This will display the Circular Reference toolbar and
1 1 help for using it to correct your formula.
+ To continue leaving the formula as it is, click Cancel.

12 Cancel OK

public class C extends A
{ 14

, . e

| Sheetl Sheet2 [Sheet3 J

45 46

Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path
from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:
» vis strongly connected to v.

4.2 DIRECTED GRAPHS

« If v is strongly connected to w, then w is strongly connected to v.

« If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

Algorithms

» strong components (6)=(s)

ROBERT SEDGEWICK | KEVIN WAYNE @ e

http://algs4.cs.princeton.edu

48

Connected components vs. strongly-connected components

v and w are strongly connected if there is both a directed
path from v to w and a directed path from w to v

v and w are connected if there is
a path between v and w

O NO-0

(2)
Y 5

3 connected components

5 strongly-connected components

connected component id (easy to compute with DFS) strongly-connected component id (how to compute?)
01 2 3 4 5 6 7 8 91011 12 0 1 2 3 4 5 6 7 8 91011 12
cc[T]O 0O00OO O 1 112 2 22 scc[J]1 0 1 1 1 1 3 4 3 2 2 2 2

public int connected(int v, int w) public int stronglyConnected(int v, int w)
{ return cc[v] == cc[w]; } { return scc[v] == scc[w]; 1}
A A

| |
constant-time client connectivity query constant-time client strong-connectivity query

49

Strong component application: software modules

Software module dependency graph.
« Vertex = software module.
« Edge: from module to dependency.

Firefox Internet Explorer

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

= 1 g
M o~ vole) greategret
fox 'y;i‘ X(v A ‘Ra

blue-gill fish

dn
northern copperbelly
watet snake

\\\ R oy

earthworm

mosquito
algae (magnified)
cattails
http://www.twingroves.district96.k12.il.us /Wetlands/ /SalGraphics/ gif

Strong component. Subset of species with common energy flow.

Strong components algorithms: brief history

1960s: Core OR problem.
« Widely studied; some practical algorithms.
o Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).
o Classic algorithm.
o Level of difficulty: Algs4++.
« Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
» Forgot notes for lecture; developed algorithm in order to teach it!
« Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
« Gabow: fixed old OR algorithm.
o Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

50

52

Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G~.

Kernel DAG. Contract each strong component into a single vertex.

how to compute?

Idea. —

« Compute topological order (reverse postorder) in kernel DAG.
« Run DFS, considering vertices in reverse topological order.

first vertex is a sink
(has rm edges pointing from it)

digraph G and its strong components kernel DAG of G (in reverse topological order)

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G-.
102 453 11 9 12 10 6 7 8

reverse digraph GR

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G-.
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G~.

digraph G

Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G~.

done

0 NOoO VI WwWN = O <

11
12

scc[]

N NN N WA W= — — — O —

54

56

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
e Phase 1: run DFS on G® to compute reverse postorder.
e Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G*

@29\\

check unmarked vertices in the order

012345678910 11 12

reverse postorder for use in second dfs ()
102453119121067 8

dfs(0)
dfs(6)
dfs(8)
check 6
8 done
dfs(7)
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
check 11
dfs(10)
check 9
10 done
12 done
check 7
check 6

Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of

a digraph in time proportional to E + V.

Pf.

« Running time: bottleneck is running DFS twice (and computing GR).
o Correctness: tricky, see textbook (2nd printing).

« Implementation: easy!

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

e Phase 1: run DFS on G® to compute reverse postorder.

» Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G

check unmarked vertices in the order

102453119121067 38

dfs(1) dfs(0)
1 done dfs(5)
dfs(4)

dfs(3)
check 5
dfs(2)
check 0
check 3
2 done
3 done
check 2

4 done
5 done
check 1
0 done

dfs(6) dfs(7)
check 9 check 6
check 4 check 9
dfs(8) 7 done

check 6

8 done
check 0

6 done

Connected components in an undirected graph (with DFS)

public class CC
{

private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)
{

}

private void dfs(Graph G, int v)

}

public boolean connected(int v, int w)

{
}

marked = new boolean[G.V(Q];

id = new int[G.VO];

for (int v =0; v < G.VO; v++)

if (!marked[v])

dfs(G, v);
count++;

}

marked[v] = true;

id[v] = count;

for (int w : G.adj(v))

if (!marked[w])
dfs(G, w);

return id[v] == id[w];

Strong components in a digraph (with two DFSs)

public class KosarajuSharirSCC
private boolean marked[];
private int[] 1id;
private int count;

public KosarajuSharirSCC(Digraph G)
{

marked = new boolean[G.V(Q];
id = new int[G.VQO];

DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());

for (int v : dfs.reversePost())
if (!marked[v])

dfs(G, v);
count++;

}
}

private void dfs(Digraph G, int v)

marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if ('marked[w])
dfs(G, w);
}

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w];

61

Digraph-processing summary: algorithms of the day

single-source
reachability
in a digraph

topological sort
in a DAG

strong
components
in a digraph

DFS

DFS

Kosaraju-Sharir
DFS (twice)

62

