A 1 gO r 1 th ms ROBERT SEDGEWICK | KEVIN WAYNE Symbol tcble review

worst-case cost average case
(after N inserts) (after N random inserts) ordered

implementation)
iteration?
search | insert | delete | search hit insert delete

sequential search

key
interface

3.3 BALANCED SEARCH TREES wnordered sy N o equalsO
_ binary search
» 2-3 search trees (ordered array) lg N N N lg N N/2 N/2 yes compareTo()
» red-black BSTs
BST N N N 1.391gN 1.391IgN ? yes compareTo()
1 H » B-trees
Algorithms
I goal log N log N log N log N log N log N yes compareTo()
ROBERT SEDGEWICK | KEVIN WAYNE
http://algs4.cs.princeton.edu
Challenge. Guarantee performance.
This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.
2-3 tree
Allow 1 or 2 keys per node.
« 2-node: one key, two children.
e 3-node: two keys, three children.
3.3 BALANCED SEARCH TREES Symmetric order. Inorder traversal yields keys in ascending order.

» 2-3 search trees

Algorithms N

smaller than E

RoBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

null link

between E and J

Perfect balance. Every path from root to null link has same length.

2-3 tree demo

Search.

« Compare search key against keys in node.
« Find interval containing search key. @

« Follow associated link (recursively).

search for H

(M)

2-3 tree construction demo

2-3 tree

2-3 tree construction demo

insert S @

Insertion into a 2-3 tree

Insertion into a 2-node at bottom.
« Add new key to 2-node to create a 3-node.

insert G

Insertion into a 2-3 tree

Insertion into a 3-node at bottom.

« Add new key to 3-node to create temporary 4-node.

« Move middle key in 4-node into parent.
« Repeat up the tree, as necessary.

« If you reach the root and it's a 4-node, split it into three 2-nodes.

insert Z

Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.

root parentis a 3-node

(b2
—~ &% ief (@
parent is a 2-node

ddle
lef ORI CX) W O
oo b <

cd

right (@) right (@ b)
—
(b)

o

Q)

. Gio
oflo
- T®
. Gba
Q 3

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

bcd
less between\ /between\ /between\ /between greater
than a aandb b and c candd) (dande than e
a c e
less between\ /between\ /between\ /between greater
than a aandb band c candd dande than e

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
« Worst case:
« Best case:

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
e Worst case: IgN. [all 2-nodes]
o Best case: logsN =.6311gN. [all 3-nodes]
« Between 12 and 20 for a million nodes.
« Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

2-3 tree: implementation?

Direct implementation is complicated, because:
« Maintaining multiple node types is cumbersome.
« Need multiple compares to move down tree.
« Need to move back up the tree to split 4-nodes.
« Large number of cases for splitting.

fantasy code

public void put(Key key, Value val)
{
Node x = root;
while (x.getTheCorrectChild(key) != null)
{
x = x.getTheCorrectChildKey();
if (x.is4Node()) x.splitQ;
}
if (x.is2Node()) x.make3Node(key, val);
else if (x.is3Node()) x.make4Node(key, val);

Bottom line. Could do it, but there's a better way.

ST implementations: summary

worst-case cost
(after N inserts)

average case
(after N random inserts)

implementation

sequential search

(unordered list) N
e N NN N vz
BST N N N 1.391gN 1.391IgN ?
2-3 tree clgN clgN clgN clgN clgN clgN

ordered
iteration?

no

yes

yes

yes

key
interface

equalsQ)

compareTo()

compareTo()

compareTo()

T~

constants depend upon implementation

3.3 BALANCED SEARCH TREES

» red-black BSTs

Algorithms

RoBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3-nodes.

larger key is root
greater

than b

3-node

less between greater
than a aandb than b
less between

than a aandb

black links connect

reel linls el 2-nodes and 3-nodes

nodes within a 3-node

corresponding red-black BST

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

red-black tree

2-3 tree

An equivalent definition

A BST such that:
« No node has two red links connected to it.
« Every path from root to null link has the same number of black links.
« Red links lean left. \

"perfect black balance"

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster
because of better balance

public Val get(Key key)
{
Node x = root;
while (x != null)
{
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else == return x.val;
}
return null;
}

Remark. Most other ops (e.g., floor, iteration, selection) are also identical.

20

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =

can encode color of links in nodes.

private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node
{
Key key;
Value val;
Node Tleft, right;
boolean color; // color of parent Tink

}

private boolean isRed(Node x)

{

if (x == null) return false;

return x.color == RED;
}

null links are black

Elementary red-black BST operations

h
h.left.color e :
. h.right.color
BIED S (& .~ is BLACK

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(after)
X
h
greater
than S
less between
than E Eand S

private Node rotateLeft(Node h)
{

assert isRed(h.right);

Node x = h.right;

h.right = x.left;

x.left = h;

x.color = h.color;

h.color = RED;

return x;

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left
(before)

less
than E

between greater
Eand S than S

private Node rotateLeft(Node h)
{

assert isRed(h.right);

Node x = h.right;

h.right = x.left;

x.left = h;

x.color = h.color;

h.color = RED;

return x;

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(before)
h
X
greater
than S
less between
than E Eand S

private Node rotateRight(Node h)
{

assert isRed(h.left);

Node x = h.left;

h.left = x.right;

x.right = h;
x.color = h.color;
h.color = RED;
return x;

Invariants. Maintains symmetric order and perfect black balance.

22

24

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(after) private Node rotateRight(Node h)
{
X assert isRed(h.left);
Node x = h.left;
h h.left = x.right;
less x.right = h;
than E x.color = h.color;
h.color = RED;
between greater return x;
Eand S than S }

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors

f
(after) private void flipColors(Node h)

{
assert !isRed(h);
assert isRed(h.Teft);
assert isRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater }
than A Aand E Eand S than S

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors

(before) private void flipColors(Node h)

{
assert !isRed(h);
assert isRed(h.left);
assert isRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater }
than A Aand E EandS than S

Invariants. Maintains symmetric order and perfect black balance.

Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by
applying elementary red-black BST operations.

insert C

(E)
OO

add new
node here

right link red
so rotate left

@)

(A7
QR

(E)
Q
(AT (R]

26

28

Insertion in a LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.

left root
e

R

™ search ends
at this null link

root
o

@ red link to

e O new node
containing a

right —

- search ends
“at this null link

e attached new node
< ith red link

root
Ve

rotated left

(b)
e ™\ 10 make a

Insertion in a LLRB tree

Case 1.

Insert into a 2-node at the bottom.

« Do standard BST insert; color new link red.

« If new red link is a right link, rotate left.

insert C

(E)
OO

add new
node here

right link red
so rotate left

converts 2-node (A) (5)
to 3-node legal 3-node © @
29
Insertion in a LLRB tree Insertion in a LLRB tree
Warmup 2. Insert into a tree with exactly 2 nodes. Case 2. Insert into a 3-node at the bottom.
et « Do standard BST insert; color new link red.
larger smaller etween .
(5) search ends () () - Rotate to balance the 4-node (if needed).
at this e search ends i i
@) wudl link (b} L « Flip colors to pass red link up one level.
N se}a_n'h elrlw[i_sk © « Rotate to make lean left (if needed).
at this null lin
G e attached new
attached new 0 ":jjlmlz inserting H two lefts in arow
— node with (b) so rotate right
red link attached new
e G e ™~ node with G G 6 #
red link @ 6 Q
\ a
0 ro{atcd a rotated left add 1{:»4/
" right node here
e G 6 /ro_la}ted
Q colors flipped G risnt right link red
«— to black (a)) so rotate left
e G colors flipped both ;;_uldr?n red 1 /
£ colors flipped SOUDICOIOTS
(b o to black ool ® | (®)

O
o)
O)
()
QA

31

Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.
« Do standard BST insert; color new link red.
« Rotate to balance the 4-node (if needed).
« Flip colors to pass red link up one level.
« Rotate to make lean left (if needed).
o Repeat case 1 or case 2 up the tree (if needed).

inserting P

both children red
0 so flip colors
Q m N » h children
i red so
add new g .
node here flip e
‘ two lefts in a row

right link red so rotate right \

so rotate left
N

both children red
so flip colors

Red-black BST construction demo

red-black BST

33

35

Red-black BST construction demo

insert S

2

O

Insertion in a LLRB tree: Java implementation

34

Same code for all cases.

p
{

« Right child red, left child black: rotate left.
« Left child, left-left grandchild red: rotate right.
« Both children red: flip colors.

rivate Node put(Node h, Key key, Value val)

if (h == null) return new Node(key, val, RED);

int cmp = key.compareTo(h.key);

if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else if (cmp == 0) h.val = val;

if (isRed(h.right) && !isRed(h.Teft)) h = rotateLeft(h);

if (isRed(h.Teft) && isRed(h.left.left)) h = rotateRight(h);

if (isRed(h.Teft) && isRed(h.right)) flipColors(h);

return h; T
only a few extra lines of code provides near-perfect balance

h
left
h %’umta

AN right

rotate

<«

<«
<«

e
flip
@ colors

insert at bottom
(and color it red)

—— lean left
- balance 4-node
—— split 4-node

36

Insertion in a LLRB tree: visualization Insertion in a LLRB tree: visualization

N =255 N = 255
max = 8 max = 8
avg = 7.0 avg =7.0
opt=7.0 opt=7.0

AOOMARAREAANAR AN SOOMARAREAANAR AN

255 insertions in ascending order

255 insertions in descending order
37 38

Insertion in a LLRB tree: visualization Balance in LLRB trees

Proposition. Height of tree is <2 1g N in the worst case.
Pf.
« Every path from root to null link has same number of black links.

N = 255 « Never two red links in-a-row.
max = 10
avg = 7.3
opt=7.0

' I ‘ ‘ ‘ ‘l nl xl'
“ " A J nun INg nu
" l LULUL LU |

]
[
. o
|]

| [[| |

|
o o - e o =

255 random insertions

Property. Height of tree is ~ 1.00 Ig N in typical applications.

39 40

ST implementations: summary War story: why red-black?

Xerox PARC innovations. [1970s]
« Alto.

worst-case cost average case GUI
L]
(after N inserts) (after N random inserts) el key .

iteration? interface « Ethernet. XEROX. <
search | insert delete search hit insert delete

e Smalltalk.

implementation

sequential search
a 3 N N N N/2 N N/2 no equals() InterPress.
(unordered list)
e Laser printing. .
binary search Ig N N N IgN N/2 N/2 yes compareTo() . Bitmapped display. Xeroxalio
(ordered array)
« WYSIWYG text editor.
BST N N N 1.391gN 1.391gN ? yes compareTo() .
A DICHROMATIC FRAMEWORK FOR BALANCED TREES
2-3 tree clgN clgN clgN clgN clgN clgN yes compareTo() Lo 1. Guibas Robert Sedgovick®
Xerox Palo Alto Rescarch Center, Program in Computer Science
Palo Alto, California, and and Brown University
Carnegie-Mellon University Providence, R. 1.
red-black BST 2IgN 2IgN 2IgN 1.00IgN" 1.00lgN™ 1.00IgN " yes compareTo()
the way down towards a leaf. As we will sce, this has a number of
ABSTRACT significant advantages over the older methods. We shall examine a
number of varations on a common theme and cxhibit full
Tn this paper we present a uniform framework for the implementation implementations which are notable for their brevity. One
* exact value of coefficient unknown but extremely close to 1 and study of halanced tree algorithms. We show how o imbed in this ~ implementation is examined carcfully, and some properties about its
41

42

War story: red-black BSTs

Telephone company contracted with database provider to build real-time
database to store customer information.

Database implementation.
« Red-black BST search and insert; Hibbard deletion.
« Exceeding height limit of 80 triggered error-recovery process.

3.3 BALANCED SEARCH TREES

allows for up to 240 keys

Hibbard deletion
Extended telephone service outage. .~ Was the problem

« Main cause = height bounded exceeded!
« Telephone company sues database provider.
o Legal testimony:

» B-trees

Algorithms

RoBERT SEDGEWICK | KEVIN WAYNE
http://algs4.cs.princeton.edu

“ If implemented properly, the height of a red-black BST
with N keys is at most 2Ig N. ” — expert witness

Ml

43

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

fast

Property. Time required for a probe is much larger than time to access

data within a page.
Cost model. Number of probes.

Goal. Access data using minimum number of probes.

Searching in a B-tree

« Start at root.

« Find interval for search key and take corresponding link.

« Search terminates in external node.

searching for E

follow this link because
E is between * and K ~~__

Sollow this link because
_—Eis between D and H

search for E in 7

this external node

Searching in a B-tree set (M = 6)

45

47

B-trees (Bayer-McCreight, 1972)

o At least 2 key-link pairs at root.
o At least M /2 key-link pairs in other nodes.

« External nodes contain client keys.
« Internal nodes contain copies of keys to guide search.

sentinel key internal 3-node

each red key is a copy
of min key in subtree >

B-tree. Generalize 2-3 trees by allowing up to M - 1 key-link pairs per node.

choose M as large as possible so
that M links fit in a page, e.g., M = 1024

external 5-node (full) external 4-node
| [DTETE | [HTT]3 | [KIMINTOTP][QRT | [UTwIXTY]
client keys (black) all nodes except the root are 3-, 4- or 5-nodes

are in external nodes
Anatomy of a B-tree set (M = 6)

46
Insertion in a B-tree
« Search for new key.
e Insert at bottom.
» Split nodes with M key-link pairs on the way up the tree.
insertingA ,W‘
[*IBICIEIFL][HITI]2][KIMN O P J[QRT] [UTw X
ew key (A) causes new key (C) causes
'L@Qﬂ,ﬂjim CHIKIQY overflon and spit
[*TA'B |[CIETF
root split causes
a new root to be created
Inserting a new key into a B-tree set
48

Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys
requires between log -1 N and logun N probes.

Pf. All internal nodes (besides root) have between /2 and M - 1 links.

In practice. Number of probes is at most 4. «<—— M=1024; N =62 billion
logm2z N =< 4

Optimization. Always keep root page in memory.

49

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
e Java: java.util.TreeMap, java.util.TreeSet.
o C++ STL: map, multimap, multiset.
o Linux kernel: completely fair scheduler, Tinux/rbtree.h.
« Emacs: conservative stack scanning.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.
« Windows: HPFS.
e Mac: HFS, HFS+.
o Linux: ReiserFS, XFS, Ext3FS, JFS.
o Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

Building a large B tree

each line shows the result
of inserting one key ———
in some page

full page, about to split
/ J

full page splits into
two half -full pages
then a new key is added
to one of them

S = = = T T = = = = =T I = | J —1 - 50

Red-black BSTs in the wild

.

Common sense. Sixth sense.
Together they're the
FBI's newest team.

52

Red-black BSTs in the wild

48

FADE IN:

ACT FOUR

INT. FBI EQ - NIGHT

Antonio is at THE COMPUTER as Jess explains herself to Nicole
and Pollock. The CONFERENCE TABLE is covered with OPEN
REFERENCE BOOKS, TOURIST GUIDES, MAPS and REAMS OF PRINTOUTS.

JESS
It was the red door again.

POLLOCK
I thought the red door was the storage
container.

JE!
But it wasn't red anymore. It was
black.

ANTONIO
So red turning to black means...
what?

POLLOCK
Budget deficits? Red ink, black
ink?

NICOLE
Yes. I'm sure that's what it is.
But maybe we should come up with a
couple other options, just in case.

Antonio refers to his COMPUTER SCREEN, which is filled with
mathematical equations.

ANTONIO
It could be an algorithm from a binary
search tree. A red-black tree tracks
every simple path from a node to a
descendant leaf with the same number
of black nodes.

JESS
Does that help you with girls?

48

