A 1 go r 1 t h ms ROBERT SEDGEWICK | KEVIN WAYNE

Two classic sorting algorithms

Critical components in the world’s computational infrastructure.
« Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.
» Quicksort honored as one of top 10 algorithms of 20t century

2.3 QUICKSORT in science and engineering.

» quicksort

N Se/eCﬁOH Mergesort_ <«—— last lecture
« Java sort for objects.
o Perl, C++ stable sort, Python stable sort, Firefox JavaScript, ...

» duplicate keys

Algorithms

OURTH EDITION

» system sorts

Quicksort. <«—— this lecture
ROBERT SEDGEWICK | KEVIN WAYNE

httpe/ /algs4scs.princeton.edu « Java sort for primitive types.
« C gsort, Unix, Visual C++, Python, Matlab, Chrome JavaScript, ...

Quicksort t-shirt

e e i gkt J 2.3 QUICKSORT
inti, j;
charx, y;

i = left; j = right;
x = items]left + right) / 2];

» quicksort

do

while ((items[i] < x) && (i < right)} i++; b §
) while ((x < items[i]) & {j > left) j--; ! i

<= | &

{ P/ / .
y = items[i);
o % Algorithms
itemsfj] = y; "
1+ 478

}

} while (i <=);

if (left < j) quicksort(items, left, j);
if (i < right) quicksort(items, i, right);
}

RoBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quicksort

Quicksort partitioning demo

Basic plan.
o Shuffle the array.
« Partition so that, for some j
— entry a[j] is in place
- no larger entry to the left of j
- no smaller entry to the right of j
« Sort each piece recursively.

imiput Q@ U I C K S O R T E X A
shuffle K AT E L E P UTIMNAQ
partitioning item

partiton E C A I E K L P U T M Q R

N =

™ not greater not less =~
sortleft A C E E I
sort right L M O P Q R S
reeut A C E E I K L M O P Q R S

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lol).
« Exchange a[i] with a[j].

Sir Charles Antony Richard Hoare
1980 Turing Award

Quicksort: Java code for partitioning

Repeat until i and j pointers cross.

. private static int partition(Comparable[] a, int 1o, int hi)
e Scan i from left to right so long as (a[i] < a[lo]). 1
« Scan j from right to left so long as (a[j] > a[lo]). e = 1@y 5 = el
while (true)
o Exchange a[i] with a[j]. {
while (less(a[++i], a[lo])) find item on left to swap
if (i == hi) break;
When pointers cross.
. . while (Tess(a[lol, a[--31)) find item on right to swap
. EXChange a[]o] Wlth a[]]. if (J == 10) break;
if (i >= j) break; check if pointers cross
exch(a, i, j); swap
}
E C A E K P u T M Q S exch(a, lo, j); swap with partitioning item
return j; return index of item now known to be in place
t t t ’
lo j hi
before |v during V\ =v ‘ >v after =v ‘V‘

partitioned!

t t 1 t t t
To hi i 3 To]

Quicksort: Java implementation

public class Quick

{

private static int partition(Comparable[] a, int 1o, int hi)

{ /* see previous slide */ }

public static void sort(Comparable[] a)
{

StdRandom.shuffle(a);

sort(a, 0, a.length - 1);
}

private static void sort(Comparable[] a, int lo, int hi)

{
if (hi <= 10) return;
int j = partition(a, Tlo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

shuffle needed for
— performance guarantee
(stay tuned)

Quicksort animation

50 random items

http://www.sorting-algorithms.com/quick-sort

| ‘ | >

algorithm position
in order

current subarray
not in order

Quicksort trace

To j hi 0 1 2 3 4 5 6 7 8 9101112 13 14 15
initial values Q UI CKSORTEIXAMPILE
random shuffle K R ATELE®PUTIMAOQUOCXO S
0 5 15 ECATIEIKLPUTMQRX O S
0 3 4 E C A E I
0 2 2 A C E
0o 0 1 A C
C
I
N /6 6 15 L PUTMAQRX O S
10 partition 7 9 15 M 0O P T Q R X U S
for subarrays 7 7 3 M 0
of sizel T~ 0
10 13 15 S Q R T U X
10 12 12 R Q S
10 11 11 Q R
Q
14 14 15 u X
X
result A CEETIIKLMOZPAOQRSTUX

Quicksort trace (array contents after each partition)

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier
(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier
than it might seem.

Staying in bounds. The (j == 10) test is redundant (why?),
but the (i == hi) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) better
to stop on keys equal to the partitioning item's key.

Quicksort: empirical analysis

Running time estimates:
» Home PC executes 108 compares/second.
Supercomputer executes 102 compares/second.

insertion sort (N2) mergesort (N log N quicksort (N log N)

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min

super instant 1 second 1 week instant instant instant instant instant instant

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

Quicksort: worst-case analysis

Worst case. Number of compares is ~ % N2.

af]

lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
initial values A B CDZEFGH 1 J KL MNDO
randomshuffe A°-' B C D E F G H | J K L M N O
0O 0 14 AB CDETFGH I J KLMNDO
1 1 14 B CDETFGH I J KL MNDO
2 2 14 CDEFGH I J KLMNDO
3 3 14 DEFGH I J KLMNDO
4 4 14 EFGHI J KLMNDO
5 5 14 F GH I J K LMNDO
6 6 14 GH I J KLMNDO
7 7 14 H 1 J K L MNO
8 8 14 I J K L MNO
9 9 14 J K L MNO
10 10 14 K L M N O
11 11 14 L MNO
12 12 14 M N O
13 13 14 N O
(o}

A B CDZETFGH I J KLMNDO

Quicksort: best-case analysis

Best case. Number of compares is ~Nlg N.

a[]
lo j hi 0 1 2 3 4 5 6 7 8 9 1011 12 13 14
initial values H A COBF EGDTUL I K J NMDO
randomshuffe H A C B F E G D L I K J N M O
0O 7 14 DACBTFEGHTLI K J NMDO
0O 3 6 B A CDF EG
o 1 2 A B C
A
C
4 5 6 E F G
E
G
8 11 14 J I K L NMO
8 9 10 I J K
|
K
12 13 14 M N O
M
(0]
A B CDETFGHII J KLMNDO

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of

N distinct keys is ~2N In N (and the number of exchanges is ~ % NIn N).

Pf. Cy satisfies the recurrence C,=C,=0 and for N > 2:

N left right
partitioning i i
}
Co+Cn— Cy + Cn— Cne1 +C
Cy= (N+1) + (%) 4 (%) I (NlTJrO>

« Multiply both sides by ~ and collect terms: partitioning probability

NCy = N(N+1) + 2(Co + C1 + ... +Cn-1)

« Subtract this from the same equation for N - 1:

NCy — (N—l)CN_l =2N + 2Cn_1

» Rearrange terms and divide by N (N + 1):
Cn Cn-1 2

N+1 N +N+1

Quicksort: average-case analysis

« Repeatedly apply above equation:

Cn _ N-1 2
N+1 N N+1
Cn_ 2 2
= N2, 2, 2
)) -1 N N+1
previous equation
_ Ovs, 2 2, 2
- N—-2 N-1 ' N N+1
O .
3 4 5 N+1
« Approximate sum by an integral:
1 1 1 1
C = 2(IN+D)[=4+-4+=-4+...
N (+)(3+4+5+ N+1>

N+1
~ 2(N+1)/ —dx
3

x

« Finally, the desired result:

Cny ~ 2(N+1)InN =~ 1.39NIgN

Quicksort: average-case analysis

Proposition. The average number of compares C, to quicksort an array of
N distinct keys is ~2N In N (and the number of exchanges is ~ % N1n N).

Pf 2. Consider BST representation of keys 1 to N.

« A key is compared only with its ancestors and descendants.

» Probability i and j are compared equals 2/|j - i+ 1]. \

first partitioning
item in

left subarray \

first partitioning

item \

3 and 6 are compared
(when 3 is partition)

1 and 6 are not compared
(because 3 is partition)

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~2N InN (and the number of exchanges is ~ ' N1n N).

Pf 2. Consider BST representation of keys 1 to N.

shuffle

9 10 2 5 8 7 6 1 m 12 13 3 4

first partitioning

item \

first partitioning
item in

left subarray \

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~2N1In N (and the number of exchanges is ~ % N1n N).

Pf 2. Consider BST representation of keys 1 to N.
« A key is compared only with its ancestors and descendants.
» Probability i and j are compared equals 2/|j - i+ 1|.

N N 9 N N-—i+1 1
« Expected number of compares = — - = 2 =
: pares =3, > joer1 — X X ;
i=1 j=i141 =1 =2
/ < vy !
all pairs i and j - = j
N
1
~ 2N — dx
=1

= 2NInN

20

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.
e« N+(N-1D+W-2) +...+1 ~ AN2
« More likely that your computer is struck by lightning bolt.

Average case. Number of compares is ~1.39 Nig N.
» 39% more compares than mergesort.
« But faster than mergesort in practice because of less data movement.

Random shuffle.
« Probabilistic guarantee against worst case.
« Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array

« Is sorted or reverse sorted.
« Has many duplicates (even if randomized!)

Quicksort: practical improvements

Insertion sort small subarrays.
« Even quicksort has too much overhead for tiny subarrays.
« Cutoff to insertion sort for ~ 10 items.
« Note: could delay insertion sort until one pass at end.

private static void sort(Comparable[] a, int To, int hi)

{
if (hi <= 1o + CUTOFF - 1)
{
Insertion.sort(a, 1o, hi);
return;
}

int j = partition(a, Tlo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

Quicksort properties

Proposition. Quicksort is an in-place sorting algorithm.
Pf.
» Partitioning: constant extra space.
» Depth of recursion: logarithmic extra space (with high probability).

AN

can guarantee logarithmic depth by recurring
on smaller subarray before larger subarray

Proposition. Quicksort is not stable.
Pf.

B C C A

1 3 B, G Al
1 3 B, Ay Ci
0 1 Al B, C C

22

Quicksort: practical improvements

Median of sample.
« Best choice of pivot item = median.
« Estimate true median by taking median of sample.
« Median-of-3 (random) items.

~ 12/7 N In N compares (slightly fewer)
~ 12/35 N In N exchanges (slightly more)

private static void sort(Comparable[] a, int To, int hi)
{

if (hi <= 1o) return;

int m = median0f3(a, lo, 1o + (hi - 10)/2, hi);
swap(a, lo, m);

int j = partition(a, Tlo, hi);
sort(a, lo, j-1);
sort(a, j+l1, hi);

24

Quicksort with median-of-3 and cutoff to insertion sort: visualization

— N TR T R

part

||||||I|||||..II.|I||||||.||.I|I.||..|.I|.||"|
ent

result of
first partition

et e 1
P TR
o
A
I
A
bothsareys L wnana

L ..u.|mu||||||||||||IIIIIIIIIIII|||||||||||||||||||||"""""""""""l""
25
Selection
Goal. Given an array of N items, find the 4 largest.
Ex. Min (k=0), max (k=N -1), median (k=N/2).
Applications.
« Order statistics.
» Find the "top £."
Use theory as a guide.
e Easy Nlog N upper bound. How?
» Easy N upper bound for k=1,2,3. How?
* Easy N lower bound. Why?
Which is true?
e Nlog N lower bound? «——— s selection as hard as sorting?
e N upper bound? <«——— is there a linear-time algorithm for each k?
27

2.3 QUICKSORT

» selection

Algorithms

RoBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quick-select

Partition array so that:
o Entry a[j] is in place.
« No larger entry to the left of j.
« No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

public static Comparable select(Comparable[] a, int k)

{ if a[k] is here
StdRandom.shuffle(a);

if a[k] is here

set hi to j-1 set To to j+1
int To = 0, hi = a.length - 1;
while (hi > 1o) \ /
{
int j = partition(a, lo, hi); =v ‘v‘ =>v
if G <k To=3+1; } t t
else if (3 > k) hi =3 - 1; To i i
else return a[k];
}

return a[k];

28

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.

Pf sketch.

« Intuitively, each partitioning step splits array approximately in half:
N+N/2+N/4+...+1 ~ 2N compares.
« Formal analysis similar to quicksort analysis yields:

Cy = 2N +2kIn(N/K) +2(N—K) In(N/ (N k)

N\

(2+21In2)N to find the median

Remark. Quick-select uses ~% N2 compares in the worst case, but
(as with quicksort) the random shuffle provides a probabilistic guarantee.

2.3 QUICKSORT

Algorithms » duplicate keys

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Theoretical context for selection

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] Compare-based
selection algorithm whose worst-case running time is linear.

Time Bounds for Selection

by .

Manuel Blum, Robert W. Floyd, Vaughan Pratt,
Ronald L. Rivest, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of
n numbers is shown to be at most a linear function of n by analysis of
a new selection algorithm -- PICK. gSpecifically, no more than

5.4305 n comparisons are ever required. This bound is improved for

Remark. But, constants are too high = not used in practice.

Use theory as a guide.
« Still worthwhile to seek practical linear-time (worst-case) algorithm.
« Until one is discovered, use quick-select if you don’t need a full sort.

30

War story (C gsort function)

A beautiful bug report. [Allan Wilks and Rick Becker, 1991]

We found that gsort is unbearably slow on "organ-pipe" inputs like "01233210":

main (int argc, char**argv) {
int n = atoi(argv[1]), i, x[100000];
for (i =0; i <n; i++)
x[i] = 1;
for (5 i < 2*%n; i++)
x[i] = 2*n-i-1;
gsort(x, 2*n, sizeof(int), intcmp);

Here are the timings on our machine:
$ time a.out 2000

real 5.85s

$ time a.out 4000

real 21.64s

$time a.out 8000

real 85.11s

32

War story (C gsort function)

AT&T Bell Labs (1991). Allan Wilks and Rick Becker discovered that a
gsort() call that should have taken seconds was taking minutes.

Why is gsort() so slow?
>

At the time, almost all gsort() implementations based on those in:
« Version 7 Unix (1979): quadratic time to sort organ-pipe arrays.
« BSD Unix (1983): quadratic time to sort random arrays of Os and 1s.

33

Duplicate keys

Mergesort with duplicate keys. Between %2 Nlg N and Nlg N compares.

Quicksort with duplicate keys. Algorithm goes quadratic unless
partitioning stops on equal keys!

AN

which is why ours does!
(but many textbook implementations do not)

STOPONEQUALKEYS

! (.

swap if we don't stop if we stop on
on equal keys equal keys

35

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.
« Sort population by age.
« Remove duplicates from mailing list.
« Sort job applicants by college attended.

Typical characteristics of such applications. Chicago 09:25:52
Chicago 09:03:13
« Huge array. Chicago 09:21:05

Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00

o Small number of key values.

Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

T
|

key

34

Duplicate keys: the problem

Mistake. Put all items equal to the partitioning item on one side.
Consequence. ~% N2 compares when all keys equal.

BAABABBBCCC AAAAAAAAAAA

Recommended. Stop scans on items equal to the partitioning item.
Consequence. ~Nlg N compares when all keys equal.

BAABABCCBCB AAAAAAAAAAA

Desirable. Put all items equal to the partitioning item in place.

AAABBBBBCCC AAAAAAAAAAA

36

3-way partitioning

Goal. Partition array into 3 parts so that:
« Entries between 1t and gt equal to partition item v.
« No larger entries to left of 1t.
« No smaller entries to right of gt.

before |v| | |
4 t
Tlo hi
after | <v | =v >V |
4 4 t t
To 1t gt hi

Dutch national flag problem. [Edsger Dijkstra]
« Conventional wisdom until mid 1990s: not worth doing.
« New approach discovered when fixing mistake in C library gsort().
« Now incorporated into gsort() and Java system sort.

37

Dijkstra 3-way partitioning demo

e Let v be partitioning item a[lo].

« Scan i from left to right.
— (a[i] < v): exchange a[1t] with a[i]; increment both 1t and 1
— (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

V ¥
A B C D P P P P P \ w Y z X
0 0
lo hi
invariant
| <V |=v | >V

39

Dijkstra 3-way partitioning demo

o Let v be partitioning item a[7o].
« Scan i from left to right.

— (a[il < v): exchange a[1t] with a[i]; increment both 1t and i

— (a[il > v): exchange a[gt] with a[i]; decrement gt

— (a[i] == v): increment i

It i

gt

‘2 {
P A B X w P P \ P D P C z
f f
lo hi

invariant
° [«] v
t t
1t i gt
Dijkstra's 3-way partitioning: trace
v al]

1t i gt \\\0 1 2 3 4 5 6 7 8 91011
0 0 11 R B W WR W B R R W B R
0 1 1 R.B R
1 2 11 R W R
1 2 10 R R B

1 3 10 R W B

1 3 9 R B W

2 4 9 R R W

2 5 9 R W W

2 5 8 R W R

2 5 7 R R R

2 6 7 R B R

3 7 7 R R

3 8 7 R R W

3 8 7 B B B R R RRIRWWWW
3-way partitioning trace (array contents after each loop iteration)

38

40

3-way quicksort: Java implementation

private static void sort(Comparable[] a, int lo, int hi)
{
if (hi <= lo) return;
int 1t = lo, gt = hi;
Comparable v = a[lo];
int i = lo;
while (i <= gt)
{
int cmp = a[i].compareTo(v);
if (cmp < 0) exch(a, Tt++, i++);
else if (cmp > 0) exch(a, i, gt--);
else i++;
}
before lV[[l
sort(a, lo, 1t - 1); ql i
sort(a, gt + 1, hi); duing [<V [=V | [>v]
} 1 [
Tt i gt
after l <V [=V [>V l
t 1 t t
Tlo 1t gt hi

41

Duplicate keys: lower bound

Sorting lower bound. If there are n distinct keys and the i one occurs
x; times, any compare-based sorting algorithm must use at least

| n)
lg< N! In!) ~ —inlg% <«— NIgN when all distinct;

! lsco . .
T1: T2: 5=l linear when only a constant number of distinct keys

compares in the worst case.

proportional to lower bound

Proposition. [Sedgewick-Bentley, 1997]
Quicksort with 3-way partitioning is entropy-optimal.
Pf. [beyond scope of course]

Bottom line. Randomized quicksort with 3-way partitioning reduces
running time from linearithmic to linear in broad class of applications.

43

3-way quicksort: visual trace

mnnnnnm
equal to partitioning element <

2.3 QUICKSORT

Algorithms

» system sorts

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

42

Sorting applications

Sorting algorithms are essential in a broad variety of applications:

Sort a list of names.

Organize an MP3 library. alivians ettt
Display Google PageRank results.

List RSS feed in reverse chronological order.

Find the median.
Identify statistical outliers. PEEIES (ISR CaBY CHEa ime
are in sorted order

Binary search in a database.
Find duplicates in a mailing list.

Data compression.
CompUter graphlcs. non-obvious applications

Computational biology.
Load balancing on a parallel computer.

Engineering a system sort

Basic algorithm = quicksort.

.

Cutoff to insertion sort for small subarrays.
Partitioning scheme: Bentley-Mcllroy 3-way partitioning.

Partitioning item. \
) similar to Dijkstra 3-way partitioning
- small arrays: middle entl’y (but fewer exchanges when not many equal keys)

— medium arrays: median of 3
— large arrays: Tukey's ninther [next slide]

Engineering a Sort Function

JON L. BENTLEY
M. DOUGLAS McILROY
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A

SUMMARY

We recount the history of a new gsor function for a C library. Our function is clearer, faster and more
robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a
novel solution to Dijkstra’s Dutch National Flag problem; and it swaps efficiently. Its behavior was
assessed with timing and debugging testbeds, and with a program to certify performance. The design
techniques apply in domains beyond sorting.

Now very widely used. C, C++, Java 6,

45

47

Java system sorts

Arrays.sort().
« Has different method for each primitive type.
« Has a method for data types that implement Comparable.
« Has a method that uses a Comparator.
« Uses tuned quicksort for primitive types; tuned mergesort for objects.

import java.util.Arrays;
public class StringSort
{
public static void main(String[] args)
{
String[] a = StdIn.readStrings());
Arrays.sort(a);
for (int i = 0; i < N; i++)
StdOut.println(alil);
}
}

Q. Why use different algorithms for primitive and reference types?

46

Tukey's ninther

Tukey's ninther. Median of the median of 3 samples, each of 3 entries.
« Approximates the median of 9.
» Uses at most 12 compares.

nine evenly
spaced entries

groups of 3 R A M G X K B J E
medians M K E

ninther K

Q. Why use Tukey's ninther?
A. Better partitioning than random shuffle and less costly.

48

A beautiful mailing list post (Yaroslavskiy, September 2011)

Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

Hello A11,

I'd like to share with you new Dual-Pivot Quicksort which is faster than the known
implementations (theoretically and experimental). I'd like to propose to replace the JDK's

Quicksort implementation by new one.

Description

The classical Quicksort algorithm uses the following scheme:

1. Pick an element P, called a pivot, from the array.
2. Reorder the array so that all elements, which are less than the pivot,

come before the

pivot and all elements greater than the pivot come after it (equal values can go either way).

After this partitioning, the pivot element is in its final position.
3. Recursively sort the sub-array of lesser elements and the sub-array of

The invariant of classical Quicksort is:

[<=p|>p]

There are several modifications of the schema:

[<p|=p|>p] or [=p|<p|>p|=p]

But all of them use *one* pivot.

The new Dual-Pivot Quicksort uses *two* pivots elements in this manner:
1. Pick an elements P1, P2, called pivots from the array.

2. Assume that P1 <= P2, otherwise swap it.
3. Reorder the array into three parts: those less than the smaller pivot,

greater elements.

those Tlarger than

the larger pivot, and in between are those elements between (or equal to) the two pivots.

4. Recursively sort the sub-arrays.
The invariant of the Dual-Pivot Quicksort is:

[<Pl |Pl<=&<=P2}>P2]

Dual-pivot partitioning demo

49

Initialization.
o Choose a[1o] and afhi] as partitioning items.

* Exchange if necessary to ensure a[lo] < a[hi].

exchange a[l1o] and a[hi]

Dual-pivot quicksort

Use two partitioning items p1 and p2 and partition into three subarrays:
« Keys less than p.

« Keys between pi and pa.

« Keys greater than pa2.

p1 < p1

P1 p1 =

It

Recursively sort three subarrays.

and < p2 p2

gt

> P2

similar to Dijkstra's 3-way partitioning

e

Note. Skip middle subarray if p1 = p2.

Dual-pivot partitioning demo

50

Main loop. Repeat until i and gt pointers cross.

o If

(a[i] < a[lol), exchange a[i] with a[1t] and increment 1t and 1.

o Elseif (a[i] > a[hi]), exchange a[i] with a[gt] and decrement gt.

« Else, increment 1.

P1

< p1

p1< and < p2

gt

> p2

P2

hi

Dual-pivot partitioning demo Dual-pivot quicksort

Finalize. Use two partitioning items p1 and p2 and partition into three subarrays:
e Exchange a[lo] with a[--1t]. « Keys less than p.
o Exchange a[hi] with a[++gt]. « Keys between pi and pa.

« Keys greater than pa2.

p1< p1 p1 p1 < and =< p2 p2 > p2 p1 < p1 p1 p1 < and =< p2 p2 > p2
))) t 0 0))
lo It gt hi lo It gt hi
" s Proposition. [Wild and Nevel] 1.9 N In N compares and 0.6 N In N exchanges.
:) " th th Improvements. Take 5 random items, use 2nd and 4th largest for p: and p>.

3-way partitioned Now widely used. Java 7, Python unstable sort, ...

54

Which sorting algorithm to use? Which sorting algorithm to use?
Many sorting algorithms to choose from: Applications have diverse attributes. o
arrribures
« Stable? 1234M
. algorithm A e .
Internal (in-memory) sorts. « Parallel? 8 o o o
© L] L]
« Insertion sort, selection sort, bubblesort, shaker sort. o Deterministic? > o
« Quicksort, mergesort, heapsort, samplesort, shellsort. o Duplicate keys? E . ¢ o o
« Solitaire sort, red-black sort, splaysort, dual-pivot quicksort, timsort, ... o Multiple key types? G . . .
o Linked list or arrays? e . * .
External sorts. Poly-phase mergesort, cascade-merge, psort, « Large or small items? X o c

« Randomly-ordered array?
many more combinations of

String/radix sorts. Distribution, MSD, LSD, 3-way string quicksort. » Guaranteed performance? attributes than algorithms
Parallel sorts. Elementary sort may be method of choice for some combination but cannot
« Bitonic sort, Batcher even-odd sort. cover all combinations of attributes.

« Smooth sort, cube sort, column sort.
» GPUsort. Q. Is the system sort good enough?
A. Usually.

