Performance Improvement
Revisited

Goals of this Lecture gg,&

* Help you learn how to:
+ Improve program performance by exploiting knowledge
of underlying system
- Compiler capabilities
*+ Hardware architecture
» Program execution

+ And thereby:
+ Help you to write efficient programs
+ Review material from the second half of the course

Improving Program Performance

+ Most programs are already “fast enough”
+ No need to optimize performance at all
+ Save your time, and keep the program simple/readable

« Most parts of a program are already “fast enough”
+ Usually only a small part makes the program run slowly
+ Optimize only this portion of the program, as needed

+ Steps to improve execution (time) efficiency
+ Do timing studies (e.g., gprof)
+ Identify hot spots
- Optimize that part of the program

* Repeat as needed 3

Ways to Optimize Performance

+ Better data structures and algorithms
* Improves the “asymptotic complexity”
+ Better scaling of computation/storage as input grows
+ E.g., going from O(n?) sorting algorithm to O(n log n)
+ Clearly important if large inputs are expected
+ Requires understanding data structures and algorithms

* Better source code the compiler can optimize
- Improves the “constant factors”
+ Faster computation during each iteration of a loop
+ E.g., going from 1000n to 10n running time
+ Clearly important if a portion of code is running slowly
+ Requires understanding hardware, compiler, execution

@a Limitations of Optimizing Compilersgg

* Fundamental constraint
+ Compiler must not change program behavior
+ Even under rare pathological inputs

Helping the Compiler Do Its Job « Behavior that may be obvious to the programmer
can be obfuscated by languages and coding styles
+ Data ranges more limited than variable types suggest
« Array elements remain unchanged by function calls

* Most analysis is performed only within functions
* Whole-program analysis is too expensive in most cases

* Most analysis is based only on static information
- Compiler has difficulty anticipating run-time inputs

Worrying About Side Effects

« Is this transformation okay?

Avoiding Repeated Computation

+ A good compiler recognizes simple optimizations
+ Avoiding redundant computations in simple loops int funcl(int x) {
- Still, programmer may still want to make it explicit) return £(x) + £(x) + £(x) + £(x);

» Example \
int funcl(int x) {
return 4 * £(x);

+ Repetition of computation: n * i

<
iy

+ Not necessarily, if }
for (1 = 0; i < n; it4) int counter = 0;
for (j = 0; j < n; j++)
a[n*i + j] = b[j]; Aets BERt o) And this function may be defined in
return counter++; | another file known only at link time
\for(i=0;1<n;i++)(}
int ni = n * i;
for (3 = 0; j < n; j++) « Compiler cannot always avoid repeated computation
a[ni + 3] = b[j]; + May not know if the code has a “side effect”
! 7 - ... that makes the transformation change the code’ s behavior 8

Memory Aliasing g@ﬁ

* Memory aliasing
+ Single data location accessed through multiple names
+ E.g., two pointers that point to the same memory location

+ Modifying the data using one name
+ Implicitly modifies the values seen through other names
Xp, yp —
+ Blocks optimization by the compiler

+ The compiler cannot tell when aliasing may occur
+ ... and so must forgo optimizing the code

* Programmer often does know
+ And can optimize the code accordingly 9

Aliasing Example @a

* Is this optimization okay?

int *x, *y;

*x = 5;

*y = 10;

printf (“x=3d\n”, *x);

T

printf (“x=5\n") ;

* Not necessarily

+ If y and x point to the same location in memory...
- ... the correct output is “x = 10\n”

Summary: Helping the Compiler

« Compiler can perform many optimizations
* Register allocation
+ Code selection and ordering
+ Eliminating minor inefficiencies

+ But often the compiler needs your help
+ Knowing if code is free of side effects
+ Knowing if memory aliasing will not happen

+ Modifying the code can lead to better performance
* Profile the code to identify the “hot spots”
+ Look at the assembly language the compiler produces
* Rewrite the code to get the compiler to do the right thing

11

Exploiting the Hardware

Underlying Hardware

+ Implements a collection of instructions
« Instruction set varies from one architecture to another
« Some instructions may be faster than others

+ Registers and caches are faster than main memory
« Number of registers and sizes of caches vary
« Exploiting both spatial and temporal locality

+ Exploits opportunities for parallelism
« Pipelining: decoding one instruction while running another
+ Benefits from code that runs in a sequence
« Superscalar: perform multiple operations per clock cycle
- Benefits from operations that can run independently
« Speculative execution: performing instructions before knowing they
will be reached (e.g., without knowing outcome of a branch)

Addition Faster Than Multiplicationg&

+ Adding instead of multiplying
+ Addition is faster than multiplication

+ Recognize sequences in products
+ Replace multiplication with repeated addition

for (i = 0; i < n; i++) {
int ni = n * i;
for (j = 0; j < n; j++)
a[ni + j] = b[jl;
}
int ni = 0;
\ for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)
a[ni + j] = b[j];
ni +=n

Bit Operations Faster Than Arithmetic

!

+ Use shifts to multiply/divide by powers of 2

+ “x >> 3" is faster than “x/8”
+ “x << 3" is faster than “x * 8” 33 mmmm
53<<2 [1]1]0]1]0[0]0]0]

+ Bit masking is faster than
mod operation

+ “x & 15” is faster than “x % 16” 53 [0[o[1[1]o]1]o]1]
& 15 [ofo[o[o[1]1]1]1]

5 [ofofo[ofo[1]o1]
15

Caching: Matrix Multiplication @

iy

« Caches
« Slower than registers, but faster than main memory
+ Both instruction caches and data caches

* Locality
« Temporal locality: recently-referenced items are likely to
be referenced in near future

+ Spatial locality: ltems with nearby addresses tend to be
referenced close together in time

+ Matrix multiplication
+ Multiply n-by-n matrices A and B, and store in matrix C
+ Performance heavily depends on effective use of caches,

Matrix Multiply: Cache Effects

for (i=0; i<n; i++) {
j++) |
for (k=0; k<n; k++)
c[i][j] += al[il[k] * b[k][]];

for (j=0; j<n;

- Reasonable cache effects D

+ Good spatial locality for A @
* Poor spatial locality for B @ n

» Good temporal locality for C ~ a B c

Matrix Multiply: Cache Effects

for (3=0; j<n; j++) {
for (k=0; k<n; k++) {
for (i=0; i<n; i++)

c[il1[3] += al[i][k] * b[k][]];

+ Rather poor cache effects
+ Bad spatial locality for A
+ Good temporal locality for B
« Bad spatial locality for C A B c

k)

Matrix Multiply: Cache Effects

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
for (3=0; j<n; j++)
c[i][j] += alil[k] * b[k][]];

+ Good cache effects
+ Good temporal locality for A
+ Good spatial locality for B
+ Good spatial locality for C

ik) (k)
u (i)
A B C

19

Parallelism: Loop Unrolling

* What limits the performance?

for (i = 0; i < length; i++)
sum += data[i];

+ Limited apparent parallelism
+ One main operation per iteration (plus book-keeping)
» Not enough work to keep multiple functional units busy
« Disruption of instruction pipeline from frequent branches

+ Solution: unroll the loop
+ Perform multiple operations on each iteration

20

Understanding Program Execution

21

Avoiding Function Calls

+ Function calls are expensive
« Caller saves registers and pushes arguments on stack
« Callee saves registers and pushes local variables on stack
« Call and return disrupt the sequence flow of the code

+ Function inlining:

Some compilers support
“inline” keyword directive.

T

void f(void) {

void g(void) {

/* Some code */
}
void f£(void) {

g();

/* Some code */

22

Writing Your Own Malloc and Free @
» Dynamic memory management
« malloc () to allocate blocks of memory

- free () to free blocks of memory

 Existingmalloc () and free () implementations
« Designed to handle a wide range of request sizes
+ Good most of the time, but rarely the best for all workloads

+ Designing your own dynamic memory management
« Forego using traditional malloc () and £ree (), and write your own
« E.g., if you know all blocks will be the same size
« E.g., if you know blocks will usually be freed in the order allocated
« E.g., <insert your known special property here>

23

Conclusion

» Work smarter, not harder
- No need to optimize a program that is “fast enough”
+ Optimize only when, and where, necessary

+ Speeding up a program

+ Better data structures and algorithms: better asymptotic
behavior

+ Optimized code: smaller constants

* Techniques for speeding up a program
+ Coax the compiler
+ Exploit capabilities of the hardware
- Capitalize on knowledge of program execution

24

