

Writing Bits is Tedious for People

- Octal (base 8)
- Digits 0, 1, ..., 7
- Hexadecimal (base 16)
- Digits $0,1, \ldots, 9, A, B, C, D, E, F$
$0000=0$
$0001=1$ $0010=2$ $0011=3$ $0100=4$ $0101=5$ $0110=6$ $0111=7$ $1001=9$ $1010=A$ $1011=B$ $1100=C$ 1101 = D $1110=E$ $1111=F$

Thus the 16-bit binary number 1011001010101001 converted to hex is

Why Bits (Binary Digits)?

- Computers are built using digital circuits
- Inputs and outputs can have only two values
- True (high voltage) or false (low voltage)
- Represented as 1 and 0
- Can represent many kinds of information
- Boolean (true or false)
- Numbers (23, 79, ...)
- Characters (${ }^{\prime} \mathrm{a}$ ', ' z ', ...)
- Pixels, sounds
- Internet addresses
- Can manipulate in many ways
- Read and write
- Logical operations
- Arithmetic
\qquad 2

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column

Finite Representation of Integers

- Fixed number of bits in memory
- Usually 8,16 , or 32 bits
- (1, 2, or 4 bytes)
- Unsigned integer
- No sign bit
- Always 0 or a positive number
- All arithmetic is modulo 2^{n}
- Examples of unsigned integers
- $00000001 \rightarrow 1$
- $00001111 \rightarrow 15$
- $00010000 \rightarrow 16$
- $00100001 \rightarrow 33$
- $11111111 \rightarrow 255$

Binary Sums and Carries

Modulo Arithmetic

- Consider only numbers in a range
- E.g., five-digit car odometer: 0, 1, ..., 99999
- E.g., eight-bit numbers $0,1, \ldots, 255$
- Roll-over when you run out of space
- E.g., car odometer goes from 99999 to $0,1, \ldots$
- E.g., eight-bit number goes from 255 to $0,1, \ldots$
- Adding 2^{n} doesn't change the answer
- For eight-bit number, $\mathrm{n}=8$ and $2^{n}=256$
- E.g., $(37+256) \bmod 256$ is simply 37
- This can help us do subtraction by changing it to addition...
- Suppose you want to compute a-b
- Note that this equals $a-b+256=a+(256-b)$
- How to compute 256 - b?

One's and Two's Complement

- What's easy is computing 255 - b (in 8 bits)
- Because it's 11111111 - b, so just flip every bit of b
- E.g., if b is 01000101 (i.e., 69 in decimal)
- 255 -b

11111111
$-\quad 01000101$
10111010

- This is called the one's complement of b; just flip all the bits of b
- Two’ s complement
- Add 1 to the one' s complement
- E.g., $256-69=(255-69)+1 \rightarrow 10111011$

Putting it All Together

- Computing "a-b"
- Same as "a + 256 - b" (in 8-bit representation)
- Same as "a + (255-b) + 1"
- Same as "a + onesComplement(b) +1 "
- Same as "a + twosComplement(b)"
- Example: 172-69
- The original number 69: 01000101
- One's complement of 69: 10111010
- Two' s complement of 69: 10111011
- Add to the number 172: 10101100
- The sum comes to: 01100111

10101100
$+10111011$ 101100111

Signed Integers

How to represent negative as well as positive numbers

- Sign-magnitude representation
- Use one bit to store the sign, ($\mathrm{n}-1$) for magnitude
- Sign bit is 0 for positive number, 1 for negative number
- Examples
- E.g., $00101100 \rightarrow 44$
- E.g., $10101100 \rightarrow-44$
- Hard to do arithmetic this way, so rarely used
- Complement representation
- One's complement
- Flip every bit: E.g., $11010011 \rightarrow-44$
- Two's complement
- Flip every bit, then add 1: E.g., $11010100 \rightarrow-44$

Overflow: Running Out of Room

- Adding two large integers together
- Sum might be too large to store in the number of bits available
-What happens?
- Unsigned integers
- All arithmetic is "modulo" arithmetic
- Sum would just wrap around
- End up with sum modulo 2^{n}
- Signed integers
- Can get nonsense values
- Example with 16-bit integers
- Sum: 10000+20000+30000
- Result: -5536

Bitwise Operators: Not and XOR

- Not or One's complement (~)
- Turns 0s to 1s, and 1s to 0s
- E.g., set last three bits to 0
- $\mathrm{x}=\mathrm{x} \& \sim 7$;
- XOR (^)
- 0 if both bits are the same
- 1 if the two bits are different

\wedge	0	1
0	0	1
1	1	0

Bitwise Operators: AND and OR

- Bitwise OR (I)
- Bitwise AND (\&)

$\&$	0	1
0	0	0

$1 \quad 0 \quad 1$

- Mod on the cheap
- E.g., 53 \% 16
- .. is same as 53 \& 15 ;

53 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\& 15	0	0	0	0	1	1	1	1

5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\mid	0	1
0	0	1
1	1	1

Example: Counting the 1's

- How many 1 bits in a number?
- E.g., how many 1 bits in the binary representation of 53 ?

- Four 1 bits
- How to count them?
- Look at one bit at a time
- Check if that bit is a 1
- Increment counter
- How to look at one bit at a time?
- Look at the last bit: n \& 1
- Check if it is a $1:(\mathrm{n} \& 1)==1$, or simply (n \& 1)

Counting the Number of ' 1 ' Bits
\#include <stdio.h>
\#include <stdlib.h>
int main(void) \{
unsigned int n;
unsigned int count;
printf("Number: ");
if (scanf("8u", \&n) != 1) $\{$
fprintf(stderr, "Error: Expect unsigned int. $\backslash \mathrm{n}$ "); exit(EXIT_FAILURE)
\}
for (count $=0 ; \mathrm{n}>0 ; \mathrm{n} \gg=1$)
count += ($\mathrm{n} \& 1$);
printf("Number of 1 bits: $\% \mathbf{u} \backslash n ", ~ c o u n t) ;$
return 0 ;
\}
Summary
• Computer represents everything in binary
• Integers, floating-point numbers, characters, addresses, ...
• Pixels, sounds, colors, etc.
• Binary arithmetic through logic operations
• Sum (XOR) and Carry (AND)
• Two' s complement for subtraction
• Bitwise operators
• AND, OR, NOT, and XOR
• Unift left and shift right

