

2.3 Recursion

Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?
* New mode of thinking.
 Powerful programming paradigm.

Many computations are naturally self-referential.

e Binary search, mergesort, FFT, GCD.
e Linked data structures.
e A folder contains files and other folders.

Closely related to mathematical induction.

M. C. Escher, 1956

Mathematical Induction

Mathematical induction. Prove a statement involving an integer N by
* base case: Prove it for some specific N (usually O or 1).
e induction step: Assume it to be true for all positive integers less than N,
use that fact to prove it for N.

1 =1

1+3 =4

Ex. Sum of the first N odd integers is N2, 1+3+5 =9
1+3+5+7 =16

1+3+5+7+9 =25

Base case: True for N = 1.

Induction step:
e Let T(N) be the sum of the first N odd integers: 1+ 3 +5+ ..+ (2N - 1),
e Assume that T(N-1) = (N-1)2.
e« T(N) = T(N-1) + (2N - 1)
= (N-1)2 + (2N - 1)
=NZ-2N+1+(2N-1)
= N2

Recursive Program

Recursive Program. Implement a function having integer arguments by

* base case: Do something specific in response to "base" argument values.

* reduction step: Assume the function works for the base case, and use the

function to implement itself for general argument values.

public static String convert(int x)

{
if (x == 1) return "1";
return convert(x/2) + (x % 2);

} AN

Ex 1. Convert positive int to binary String.

Base case: return "1" for x = 1.

Reduction step:

* convert x/2 to binary 37
- "100101"

* append "0" if x even

e append "1" if x odd

automatic cast to
String
(either "0" or "1")

18
- "10010" + "1"

Recursive Program

Recursive Program. Implement a function having integer arguments by
* base case: Implementing it for some specific values of the arguments.
* reduction step: Assume the function works for smaller values of its
arguments and use it to implement it for the given values.

public class Binary
{
public static int convert(int x)
{
if (x == 1) return "1";
else return convert(x/2) + (x % 2);

}

public static void main(String[] args)
{
int x = Integer.parselInt(args[0]);
System.out.println(convert(x)) ;

} % java Binary 6
110
} % java Binary 37
100101
% java Binary 999999
11110100001000111111

Use mathematical induction to prove recursive programs correct

Recursive Program. Implement a function having integer arguments by
* base case: Implementing it for some specific values of the arguments.
* reduction step: Assume the function works for smaller values of its arguments
and use it to implement it for the given values.

Mathematical induction. Prove a statement involving an integer N by
* base case: Prove it for some specific N (usually O or 1).
* induction step: Assume it to be true for all positive integers less than N,
use that fact to prove it for N.

Ex. Proof by induction for convert (). public static String convert(int x)
{

Base case: returns "1" for x = 1, if (x == 1) return "";

TInduction S'|'€p' return convert(x/2) + (x % 2);
» Assume correct for x/2.
* correct to append "0" if x even since x = 2(x/2)

e correct to append "1" if x odd since x = 2(x/2) + 1

Recursion vs. Iteration

Every program with 1 recursive call corresponds to a loop.

public static String convert(int x) public static String convertNR(int x)
{ {
if (x == 1) return "1"; String s = "1";

return convert(x/2) + (x % 2); while (x > 1)
} {
s = (x % 2) + s;
X = x/2;
}

return s;
Reasons to use recursion:
* code more compact
e easier to understand

e easier to reason about correctness

* easy to add multiple recursive calls (stay tuned)

Reasons not to use recursion: (stay tuned)

Greatest Common Divisor
Gced. Find largest integer that evenly divides into p and q.

Ex. gcd(4032, 1272) = 24.

4032 26 x 32 x 71!
1272 23 x 31 x 31
gcd = 23 x 31=24

Applications.

e Simplify fractions: 1272/4032 = 53/168.
e RSA cryptosystem.

Greatest Common Divisor
GCD. Find largest integer that evenly divides into p and q.

Euclid's algorithm. [Euclid 300 BCE]

if g=0 <— base case
reduction step,
<«
converges to base case

ged(p,g)=1"
’ gcd(g, p % g) otherwise

gcd (4032, 1272) gcd (1272, 216)

gcd (216, 192)
gcd (192, 24) “\\\\\\\\
gcd (24, 0)

24.

4032 = 3 x 1272 + 216

10

Euclid's Algorithm
GCD. Find largest integer d that evenly divides into p and q.

if g=0 “— base case

gcd(g, p % gq) otherwise «<— reduction step,
converges to base case

ged(p, q) = { P

gcd(p, q) = gcd(3x, 2x) = x

1

Euclid's Algorithm
GCD. Find largest integer d that evenly divides into p and q.

if g=0 “— base case

pP
cd(p,q) =
ged(p, q) {gcd(q, P % q) otherwise «<— reduction step,

converges to base case

Recursive program

public static int gecd(int p, int q)
{

if (q == 0) return p; “— base case
else return gcd(q, p % q); «<— reduction step

12

Possible debugging challenges with recursion

Missing base case.

public static double BAD (int N)

{
return BAD(N-1) + 1.0/N;

}

No convergence guarantee.

public static double BAD (int N)
{
if (N == 1) return 1.0;
return BAD(1 + N/2) + 1.0/N;

Both lead to INFINITE RECURSIVE LOOP (bad news).
Try it ~__

so that you can recognize and deal with it if it later happens to you

Collatz Sequence

Collatz sequence.
e If nis 1, stop.
e If nis even, divide by 2.
e If nis odd, multiply by 3 and add 1.

Ex. 35106 53160804020105168 42 1.

public static void collatz (int N)
{
Stdout.print(N + " ") ;
if (N == 1) return;
if (N $ 2 == 0) collatz(N / 2);
collatz (3*N + 1) ;

THE COULATZ CONJECTORE STATES THAT IF YOU
PICK A NUMBER, AND IF ITSEVEN DIVIDE 1T B¢
TWO AND |F 1ITS5 0DD MULTIPLY IT BY THREE AND
ADD ONE, AND YOU REPEAT THIS PROCEDURE. LONG
ENOUGH, EVENTUALLY YOUR FRIENDS WILL SToP
CALWNG TO SEE IF YOU WANT TO HANG OUT.

No one knows whether or not this function terminates for all N (1)

[usually we decrease N for all recursive calls]

14

Recursive Graphics

A
L

New Yorker Magazine, August 11, 2008

Artsce 0.0
LEISURE FRIDAY, I g D

Ehe New JJork Eimes

Fruits of Des;; N
R 'gn,
hCem_ﬁed Organic

- o
R e e

Fruits of Design,
Certified Organic

ot
i
”!i-’" .5
Wl

il
i
i
H
ol
it

|

i
i
i
i

i

sewm of Conterp
Once again the Triennial a he que {

il
g,.
4!

s design?” with the e

!I
i
i

f

at s
issue of whel
nmental be

Black

» White and Req
SRR e o e e v f.l _":‘IL Over Over

A o Iy T —
£ e L
o
e i i

+“The Yale Boak of Quotation —_—
1o Pt From Mars; a selection
the best holiday bocke. eeMe!lAcrossHin
eemae 08 Hinges

H

The Gifts to Open ;'!::':: =y
Again and Again o

T
il

heck

wice, s a list
holiday book, and at-
books of Christonias past, |

Dok should

i

3y

i

Black, White and Read All Over 0ver

on's whap-
o York 2000.” the fifth rstalh
's architectural history of

o I

By RANDY KENNEDY When young Turkish artst pamed Serkan
tly to practice

Serkan Ozkaya'sdrawing of the page you are
<kills a5 3 reading right now, showing his drawing of the
ca adiing right now, showi

anreling Cervantes. He

st wha lives and

D for broad:
paz

imply
ot being all ' racked up Lo be
He ma w

. w Jan of he pa
o are reading right now, which shows his veesion of par
his version of the pa o reading right now, tts be i
which
There has been po break i the Contirued on Page 51

WASHINGTON — For toothache, dial
St Apollonia ASAP, St g reliet in
aflash, Keop St Matthew, ex-banker, in
mind in April; he'll el s in

Hver t

10 access is ber

ts: Unfaléing the Ne

Landi 4" atthe Natimal €
o0 ofArt
Mast imports Probably nothing in Weste
and probles comes clos
etusian, incorsolable grief, sick. o

ness of soul — th Janvan Eyck,
and night sh ol and Hugo van de
fering ot attention thatrow P
vice. Belgium, Luxembour, ard parts of

2R el P[P e Talaa Tees Taas Teree
£ o[£ Tl7 £ £l (Tl Fr £ £lr| ey £l £ gl (el 2y

2 sl el e s e Taaa e e | e e
25 T £ Tl| T Ty 2B £l T Flr £l 2l el Bl £ BT

P TEs Shr{El P e Shryrls sa[ps ShTr| sala FaTee
£ x| s Tl | T T 2hr £l T Tl £l 2Ly e Ela |2 BT

a3 els T s e T T e Taaa TeTe
25 T 3 £l T iy 2 2L\t Tl £l £l 2 Bl £ BT

i g e R e R
£ Tir(3 £ T T |2hr £l Tt T £l Tl 1 Bl (e BT

2 sl el | e sl el P el e | e e
25 T 2 Tlr| T r £ £l |ty Flr £l Pl by Bl £ By

2 S els T e Tl e e T
£ x5 Tla| Tl | 2br £Lr £t T el Elr e Ela (el BT

e e R e R
2B 27 2 £l £ Tlr 17 Tt 2 217 T By 2 £l 25 BT

H-tree of order n.
e Draw an H.

Htree

and half the size

hd
 Recursively draw 4 H-trees of order n-1, one connected to each tip.

order 1

o

%

o

order 2

order 3

18

Htree in Java

StdDraw.line(x0, vy, x1, vy);
StdDraw.line(x0, y0, x0, yl); <«— drawtheH, centeredon (x,y)
StdDraw.line(x1, yO0, x1, yl);

draw (n-1,
draw(n-1,
draw (n-1,
draw(n-1,

<— recursively draw 4 half-size Hs

19

Animated H-tree

o
ol

gt

|

|
e

Animated H-tree. Pause for 1 second after drawing each H.

5

100%

Divide-and-Conquer

Divide-and-conquer paradigm.
* Break up problem into smaller subproblems of same structure.
* Solve subproblems recursively using same method.
e Combine results to produce solution to original problem.

Divide et impera. Veni, vidi, vici. - Julius Caesar

Many important problems succumb to divide-and-conquer.

e FFT for signal processing.

e Parsers for programming languages.

e Multigrid methods for solving PDEs.

» Quicksort and mergesort for sorting.

 Hilbert curve for domain decomposition.

* Quad-tree for efficient N-body simulation.

» Midpoint displacement method for fractional Brownian motion.

21

Application: Fractional Brownian Motion

Fractional Brownian Motion

Physical process which models many natural and artificial phenomenon.
* Price of stocks.
* Dispersion of ink flowing in water.
* Rugged shapes of mountains and clouds.
 Fractal landscapes and textures for computer graphics.

23

Simulating Brownian Motion

Midpoint displacement method.
e Maintain an interval with endpoints (x,, yo) and (xy, y,).
e Divide the interval in half.
e Choose & at random from Gaussian distribution.
o Set x,, = (Xo + X)/2 and y,, = (Yo + Y1)/2 +d.

 Recur on the left and right intervals.

(x,,y,, +9d)
*
(x1571)

random __—> i

displacement 0

24

Simulating Brownian Motion: Java Implementation

Midpoint displacement method.
e Maintain an interval with endpoints (Xq, yo) and (X, yq).

e Choose 6 at random from Gaussian distribution.
e Divide the interval in half: Set x,, = (xg + x1)/2 and y,, = (Yo + Y1)/2 +d.

e Recur on the left and right intervals.

public static void curve (double x0, double yO,
double x1, double yl, double var)

{
if (x1 - x0 < 0.01)

{
StdDraw.line(x0, y0, x1, y1);
return;
}
double xm = (x0 + x1) / 2;
double ym = (y0 + yl) / 2;
ym += StdRandom.gaussian (0, Math.sqgrt(var)) ;
curve (x0, y0, xm, ym, var/2);

curve (xm, ym, x1, yl . var/2) . variance halves at each level;

change factor to get different shapes

25

Plasma Cloud

Plasma cloud centered at (x, y) of size s.
 Each corner labeled with some grayscale value.
e Divide square into four quadrants.
e The grayscale of each new corner is the average of others.
- center: average of the four corners + random displacement
-others: average of two original corners
 Recur on the four quadrants.

C1+C2
Cq 2 C2
®
Cc,+C C,+C
1 3 ® ® 2 4

\ (C1+C2;C3+C4) + 6

26

Plasma Cloud

27

BroWnian Landscap

Reference: http://www.geocities.com/aaron_torpy/gallery.htm

Towers of Hanoi

http://en.wikipedia.org/wiki/Image:Hanoiklein. jpg

29

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.
* Only one disc may be moved at a time.

A disc can be placed either on empty peg or on top of a larger disc.

|

A 4

start finish

1§’

Edouard Lucas (1883)
30

Towers of Hanoi: Recursive Solution

|

Move n-1 smallest discs right. Move largest disc lefT

CYC|IC wrap-around

Move n-1 smallest discs right.

31

Towers of Hanoi Legend
Q. Is world going to end (according to legend)?
*» 64 golden discs on 3 diamond pegs.

e World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?

32

Towers of Hanoi: Recursive Solution

public class TowersOfHanoi

{

public static void moves (int n, boolean left)
{
if (n == 0) return;
moves (n-1, 'left);
if (left) System.out.println(n + " left");
else System.out.println(n + " right");
moves (n-1, !'left);

}

public static void main(String[] args)

{
int N = Integer.parseInt(args[0]) ;
moves (N, true);

moves (n, true) : move discs 1to none pole to the left
moves (n, false): move discs 1 to n one pole to the right

smallest disc

33

Towers of Hanoi: Recursive Solution

every other move is smallest disc

T

subdivisions
of

ruler

34

Towers of Hanoi: Recursion Tree

// L Vas
// \\ /1/ \\, // \e\ // \\

74 \\?// NN N

Towers of Hanoi: Properties of Solution

Remarkable properties of recursive solution.
» Takes 2" - 1 moves to solve n disc problem.
» Sequence of discs is same as subdivisions of ruler.
 Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!
e Alternate between two moves: _ -~ Toleftifnisodd
- move smallest disc to right if n is even

- make only legal move not involving smallest disc
Recursive algorithm may reveal fate of world.

» Takes 585 billion years for n = 64 (at rate of 1 disc per second).
 Reassuring fact: any solution takes at least this long!

36

pinecone

Fibonacci Numbers

cauliflower

37

Fibonacci Numbers

Fibonacci numbers. 0,1,1,2, 3,5, 8,13, 21, 34, ..

0 if n=0
F,_,+F,, otherwise

Nu mb

8
88 1
8&% 33 ,
3888 38 :

38 83 e 88 4 -

Fibonacci rabbits

L. P. Fibonacci
(1170 - 1250)

38

A Possible Pitfall With Recursion

Fibonacci numbers. 0,1,1,2, 3,5, 8,13, 21, 34, ..

0 it n=0
Fn = 1 lf n =1
F,_,+F,, otherwise

A natural for recursion?

public static long F(int n)
{
if (n == 0) return O;
if (n == 1) return 1;
return F(n-1) + F(n-2);

FYI (classical math):

! n (1 t)n
F =
) \E

[¢"//5 |

¢ = golden ratio ~ 1.618

Ex: F(50) # 1.2 x 101

39

TEQ on Recursion 1.1 (difficult but important)

Is this an efficient way to compute F(50)?

public static long F(int n)
{
if (n == 0) return O;
if (n == 1) return 1;
return F(n-1) + F(n-2);

TEQ on Recursion 1.2 (easy and also important)

Is this an efficient way to compute F(50)?

long[] F = new long[51];

F[O0] = 0; F[1] = 1;

if (n == 1) return 1;

for (int i = 2; i <= 50; i++)
F[i] = F[i-1] + F[i-2];

Summary

How to write simple recursive programs?
* Base case, reduction step.
* Trace the execution of a recursive program.
e Use pictures.

Why learn recursion? Towers of Hanoi by W. A. Schloss.
e New mode of thinking.
 Powerful programming tool.

Divide-and-conquer. Elegant solution fo many important problems.

Exponential time.
* Easy to specify recursive program that takes exponential time.
* Don't do it unless you plan to (and are working on a small problem).

42

