COS 126

General Computer Science
Fall 2012

Robert Sedgewick

Overview

What is COS 126? Broad, but technical, intfroduction o computer science.

Goals.
* Demystify computer systems.
* Empower you to exploit available technology.
* Build awareness of substantial intellectual underpinnings.

Topics.
* Programming in Java.
* Machine architecture.
e Theory of computation.
* Applications to science, engineering, and commercial computing.

“ Computers are incredibly fast, accurate, and stupid, humans
are incredibly slow, inaccurate, and brilliant; together they
are powerful beyond imagination. ” — Albert Einstein

Intended major

Programming experience

Class

Who are you?

L JOL

00O

Social Sciences
other Science/Math
other Engineering

Humanities
CS

none
some [data from 2011-12]
lots

|'st year
Sophomore
Junior
Senior

Over half of all Princeton students take COS 126

The Basics

Bl |Lectures. [Sedgewick]
S M T W T F S
B RS office hours. «— everyone needs to meet mel!

= o v

B Precepts. [Gabai - Moretti - August - Finkelstein -
Hadidi - Homilius - Lee: Nadimpalli- Pritchard -
Przytycki - Ravi - Wetzel]

e Tips on assignments / worked examples
e Questions on lecture material.
e Informal and interactive.

—_
nN

Friend 016/017 lab. [Ugrad assistants]
e Help with systems/debugging.
* No help with course material.

O 00 N o O »h W N =

N

See www.princeton.edu/~cosl26

[
—~ O

assignments due
Piazza.

* Best chance of quick response to a question.
e Post to class or private post to staff.

for full current details and office hours.

4

Grades

Due dates

Su Mo Tu We Th Fr S
Course grades. No preset curve or quota. u Fo fu He r Sa

13 14 15
% 16 17 18 19 20 21 22
. .) w 23 24 25 26 27 28 29

9 programming assignments. 407%. 30
. .) 1 2 3 5 6
2 written exams (in class, 10/11 and 12/13). 35%. 2 8 9 10 @ 12 13
2 programming exams (evenings, 10/25 and 12/13). 15%. g o ég o e ;2 -

. .) ' o 28 29 30 31

Final programming project (due Dean's date - 1). 10%. 1 2 3
Extra credit / staff discretion. Adjust borderline cases. 7 .3 Lo 12 1 10 19
<z> 18 19 20 21 22 23 24

participation helps, frequent absence hurts
25 26 27 28 29 30

2 3 4 5,6 7 8
9 10 11 12([13[)14 15
16 17 18 19 26 21 22

04

Q

an 155 B 23 24 25 26 27 28 29
M) ' 30 31
o
2, you are here 12 3 4 5

12.58% 4 6 7 8 91011 12
- ////// B 13 14
o
2.28%

2 ' ' ' ' ' Reading period.

No lectures; precepts T and W.

http://www.princeton.edu/~cosl26

bookmark thisl!

Course Website

Computer Science 126
w gg‘ll\jgg g 12‘1:1(General Computer Science
Fall 2012

Course Information | People | Assignments | Lectures | Precepts | Exams | Booksite
COURSE INFORMATION

Course description. An introduction to computer science in the context of scientific, engineering, and commercial applications.
The goal of the course is to teach basic principles and practical issues, while at the same time preparing students to use computers
effectively for applications in computer science, physics, biology, chemistry, engineering, and other disciplines. Topics include:
programming in Java; hardware and software systems; algorithms and data structures; fundamental principles of computation; and
scientific computing, including simulation, optimization, and data analysis.

Instructor. Robert Sedgewick.
Lectures. Lectures meet on Tuesdays and Thursdays at 10am in McCosh 10.

Preceptors. David August - Adam Finkelstein - Donna Gabai (co-lead) - Bobak Hadidi - Max Homilius - Kevin Lee
Christopher Moretti (co-lead) - Shilpa Nadimpalli - David Pritchard - Pawel Przytycki - Sachin Ravi - Josh Wetzel

Precepts. Precepts meet twice a week on Tuesdays and Thursdays or Wednesdays and Fridays. Precepts begin either September
13 or 14.

Undergraduate coordinator. For enrollment problems, see Colleen Kenny-McGinley in CS 210.

Course website. The course website contains a wealth of information, including precept rosters, office hours, lecture slides,
programming assignments, and old exams.

http://www.princeton.edu/~cosl26

Computing facilities. Undergraduate lab TAs are available most evenings in Friend Center 017 to provide general help with
using your operating system and assist with debugging your programs. Lab hours are posted here.

Online forum. If you have general questions about the assignments, lectures, textbook, or other course materials, please post via
Piazza. Posts marked private are viewable only by instructors.

Grading. Two written exams (35%), two programming exams (15%), nine programming assignments (40%), final programming
project (10%), and staff discretion. We record grades in Blackboard.

Textbook and Booksite

Textbook.

INTRODUCTION TO

Programjming <«— for use while learning and studying
in Java

Robert Sedgewick Kevin Wayne

for use while online

.
B 0 o ks l T e 8006 Introduction to Programming in Java: An Interdisciplinary Approach ¥
° i i / I ———

/a/home/

ODUCTION TO PROGRAMMING AVA

e Summary of content.

Programming

* Code, exercises, examples. e e 15 e 1 ot e

of scientists and engineers

T Our Intr ion to Programming in Java [Amazon - Addison-Wesley] is an interdisciplinary approach to the
traditional CS1 curriculum. We teach all of the classic elements of programming, using an "objects-in-the-middle" approach that
emphasizes data abstraction. A key feature of the book is the manner in which we motivate each programming concept by

.
 Supplementary material
I .
examining its impact on specific applications, taken from fields ranging from materials science to genomics to astrophysics to

T INTRO TO PROGRAMMING internet commerce. The book is organized around four stages of learning to program:
. N O T e TexT bo o 1. Elements of Programming * Chapter 1: Elements of Programming introduces variables; assignment statements; built-in types of data; conditionals and

2. Functions loops; arrays; and input/output, including graphics and sound.

Chapter 2: Functions introduces modular programming. We stress the fundamental idea of dividing a program into

S00k components that can be independently debugged, maintained, and reused.

4. Data Structures Chapter 3: Object-Oriented Programming introduces data abstraction. We emphasize the concept of a data type and its

InTrRO TO CS implementation using Java's class mechanism.

* Chapter 4: Algorithms and Data Structures introduces classical algorithms for sorting and searching, and fundamental data
0. Prologue
T structures, including stacks, queues, and symbol tables.
5. A Computing Machine
6. Building a Com Booksite. Reading a book and surfing the web are two different activities: This booksite is intended for your use while online (for

_ example, while programming and while browsing the web); the textbook is for your use when initially learning new material and
7. Theory of Computation when reinforcing your understanding of that material (for example, when reviewing for an exam). The booksite consists of the
following elements:
8. Systems

9. Scientific Computation e Excerpts. A condensed version of the text narrative for reference while online.

ALcoriTHMS, 4TH EDiTiON * Exercises. Hundreds of exercises and some solutions.

e Java code. Hundreds of easily downloadable Java programs and real-world data sets.

Programming Assignments

Desiderata.
* Address an important scientific or commercial problem.
e Illustrate the importance of a fundamental CS concept.
* You solve problem from scratchl!

N-body simulation pluck a guitar string estimate Avogadro's nhumber

Programming Assignments

Desiderata.
» Address an important scientific or commercial problem.
* Tllustrate the importance of a fundamental CS concept.
* You solve problem from scratchl!

Due. Mondays 9pm via Web submission.
Computing equipment,

* Your laptop. [0S X, Windows, Linux, iPhone, ...]
* OIT desktop. [Friend 016 and 017 labs]

What's Ahead?

Lecture 2. Intro to Java.

Precept 1. Meets today/tomorrow.

Not registered? Go to any precept now; officially register ASAP.

Change precepts? Use SCORE. "

see Colleen Kenny-McGinley in CS 210
if the only precept you can attend is closed

Assignment O. [www.princeton.edu/~cos126/assignments.php]
* Due Monday 9PM.
* Read Sections 1.1 and 1.2 in textbook.
e Install Java programming environment + a few exercises.
* Lots of help available, don't be bashful.

END OF ADMINISTRATIVE STUFF

10

0. Prologue: A Simple Machine

1

Secure Chat with a One-Time Pad

Alice wants to send a secret message to Bob
* Sometime in the past, they exchange a one-time pad.
* Alice uses the pad to encrypt the message.

"use yT25a51/8S if
I ever send you an
encrypted message”

Secure Chat 1.0 [alice]

[alice]: Hey, Bob
[bob]: Hi, Alice!
[alice]: SENDMONEY

Encrypt SENDMONEY with yT25a5i/S

Secure Chat 1.0 [bob]

[alice]: Hey, Bob
[bob]: Hi, Alice!
[alice]: gX76W3v7K

Key point: Without the pad, Eve cannot understand the message.

12

Encryption Machine

Goal. Design a machine to encrypt and decrypt data.

decrypt

1 encrypt

Enigma encryption machine.
e "Unbreakable" German code during WWII.
* Broken by Turing bombe.
* One of first uses of computers.

 Helped win Battle of Atlantic by locating U-boats.

13

A Digital World

. . ey can use decimal digits, letters, or some other system,
Datais a sequence of bits. [bIT =0or 1] but bits are more easily encoded physically

e Text. ("on-off", "up-down", “hot-cold”,...)

* Programs, executables.
» Documents, pictures, sounds, movies, ...

thousands of bits billions of bits

001010 0010,0010

00101010 0010001 110:

00100100100001 00100100001110101 0001001 00100101
0101000010010 00 00100 00100010010 001010010 (100100
00010100001010010010 001000100100 0010010) 0010010
001000100010001 0010 00100100 . 001000100 00100100 010
0001000100 0001100100 0010001001000010 0010001 0001,
001001001 01001001 01000107 0010 1001001 0000100 0100
0010001, *1001000 0010 10001 00101010001 00100100 0010
001001 - 100100 100 001000 001 001000 101001~ 010010
001001 000100 01000 001000 00100 001000 100011111 10001
10001001 01000100 00101100010 0001000 01101010 00

\5&\

—
J @"\‘NZY LETTER FROM &(y.\d\)mi

Copyright 2004, Sidney Harris
http://www.sciencecartoonsplus.com

1001000 1000 01000 001001 1010001 000 1000 0
01001000100100 01000 1010100110 01000111000
0010011110001 0100101 10100010010010.

10010010

image courtesy of David August

14

A Digital World

Data is a sequence of bits. [bit = 0 or 1]
e Text.
 Programs, executables.
» Documents, pictures, sounds, movies, ...

Ex. Base64 encoding of text.
» Simple method for representing 2-z, a-z, 0-9, +, /
* 6 bits to represent each symbol (64 symbols)

000000 A | 001000 I (010000 © 011000 Y |[100000 g |101000 o |110000 w |[111000 4
000001 B | 001001 J | 010001 R | 011001 Z | 100001 h |101001 p (110001 x |111001 5
000010 C | 001010 K | 010010 S | 011010 a |100010 i |101010 g (110010 y |111010 6
000011 D | 001011 L | 010011 T | 011011 b |100011 j |101011 r |110011 =z | 111011 7
000100 E | 001100 M | 010100 U | 011100 c |100100 k |101100 s |110100 O |111100 8
000101 F | 001101 N | 010101 V | 011101 4 |{100101 1 |101101 t |110101 1 |111101 9
000110 G | 001110 © | 010110 W | 011110 e {100110 m | 101110 uw |110110 2 |111110 +
000111 H | 001111 P | 010111 X | 011111 f |100111] n | 101111 v |110111 3 |111111 /

15

Secure Chat with a One-Time Pad

First challenge: Create a one-time pad.

Good choice: A random sequence of bits (stay tuned).

Note: any sequence of bits can be encoded as characters

110010 010011} 110110} 111001} 011010 111001| 100010 111111| 010010 one—ﬁmepad

characters

16

Encryption.

One-Time Pad Encryption

 Convert text message to N bits.

N

D

Base64 Encoding

A
B

0 000000
1 000001

@)

N

Y

010010

000100

001101

000011

001110

001101

000100

011000

message

base64

17

Encryption.

One-Time Pad Encryption

 Convert text message to N bits.

* Use N random bits as one-time pad.

N

D

M

o)

N

Y

010010

000100

001101

000011

001100

001110

001101

000100

011000

110010

010011

110110

111001

011010

111001

100010

111111

010010

message

base64

one-time pad

18

Encryption.

One-Time Pad Encryption

 Convert text message to N bits.

XOR Truth Table

0
* Use N random bits as one-time pad. 0
» Take bitwise XO? of two bitstrings. 1

sum corresponding pair of bits: 1if sum is odd, O if even
S E N D M 0] N E Y
010010] 000100| 001101 | 000011 | 001100| 001110| 001101 | 000100 | 011000
110010 010011| 110110 111001 | 011010 111001 | 100010 111111 | 010010
100000 010111| 111011 111010| 010110 110111| 101111 111011 | 001010
\

0~1=1

R o = O
(@ N)

message
base64
one-time pad

XOR

19

Encryption.

One-Time Pad Encryption

 Convert text message to N bits.

* Use N random bits as one-time pad.

» Take bitwise XOR of two bitstrings.
* Convert binary back into text.

Base64 Encoding

A
B

000000
000001

N

D

M

@)

N

Y

010010

000100

001101

000011

001100

001110

001101

000100

011000

110010

010011

110110

111001

011010

111001

100010

111111

010010

100000

010111

111011

111010

110111

101111

111011

001010

g

X

6

3

K

message
base64
one-time pad
XOR

encrypted

20

Typical Exam Question (TEQ)

Encrypt the message E A S Y withthepad1 2 3 4.

21

Secure Chat with a One-Time Pad

Alice wants to send a secret message to Bob
* Sometime in the past, they exchange a one-time pad.
* Alice uses the pad to encrypt the message.

"use yT25a51i/8 if
I ever send you an
encrypted message”

Secure Chat 1.0 [alice]

[alice]: Hey, Bob
[bob]: Hi, Alice!
[alice]: SENDMONEY

Encrypt SENDMONEY with yT25a5i/S

Secure Chat 1.0 [bob]

[alice]: Hey, Bob
[bob]: Hi, Alice!
[alice]: gX76W3v7K

Key point: Without the pad, Eve cannot understand the message.
But how can Bob understand the message?

22

Secure Chat with a One-Time Pad

Alice wants to send a secret message to Bob

"use yT25a51/8S if
I ever send you an
encrypted message”

* Sometime in the past, they exchange a one-time pad.

* Alice uses the pad to encrypt the message.

* Bob uses the same pad to decrypt the message.

Secure Chat 1.0 [alice] Secure Chat 1.0 [bob]
[alice]: Hey, Bob [alice]: Hey, Bob
[bob]: Hi, Alice! [bob]: Hi, Alice!
[alice]: SENDMONEY [alice]: gX76W3v7K
SENDMONEY
Encrypt SENDMONEY with yT25a5i/S Decrypt with yT25a5i/S

Key point: Without the pad, Eve cannot understand the message.

23

One-Time Pad Decryption

Decryption.
 Convert encrypted message to binary.

g X 7 6 W 3 v 7 K encrypted

24

Decryption.

One-Time Pad Decryption

* Convert encrypted message to binary.

g

X

6

Base64 Encoding

A
B

0 000000
1 000001

3

K

100000

010111

111011

111010

110111

101111

111011

001010

encrypted

base64

25

One-Time Pad Decryption

Decryption.
 Convert encrypted message to binary.
* Use same N "random” bits (one-time pad).

g X 7 6 W 3 v 7 K encrypted

100000| 010111| 111011] 111010| 010110| 110111| 101111 111011| 001010| baseb4

110010 010011} 110110} 111001} 011010 111001| 100010 111111| 010010 one-‘l'ime,pad

26

Decryption.

One-Time Pad Decryption

 Convert encrypted message to binary.

» Use same N random bits (one-time pad).
» Take bitwise XOR of two bitstrings.

XOR Truth Table

R P O O

g

X

W

K

100000

010111

111011

111010

010110

110111

101111

111011

001010

110010

010011

110110

111001

011010

111001

100010

111111

010010

010010

000100

001101

000011

001100

001110

001101

000100

011000

\

1+~1=0

R o = O
(@ N)

encrypted
base64
one-time pad

XOR

27

Decryption.

One-Time Pad Decryption

 Convert encrypted message to binary.

» Use same N random bits (one-time pad).
» Take bitwise XOR of two bitstrings.
e Convert back into text.

Base64 Encoding

A
B

000000
000001

g

X

W

K

100000

010111

111011

111010

010110

110111

101111

111011

001010

110010

010011

110110

111001

011010

111001

100010

111111

010010

010010

000100

001101

000011

001110

001101

000100

011000

E

N

D

o)

encrypted
base64
one-time pad
XOR

message

28

Why Does It Work?

Crucial property. Decrypted message = original message.

a original message bit
b one-time pad bit
° XOR operator
a”b encrypted message bit
(@”b)"b decrypted message bit

XOR Truth Table

Why is crucial property true?

0 0 0
* Use properties of XOR. 0o 1 1
*(@"b)"b=a”(b"b)=a"0=a —
T \ 1 1 0

associativity of * identity

always O

29

One-Time Pad Decryption (with the wrong pad)

Decryption.
 Convert encrypted message to binary.

g X 7 6 W 3 v 7 K encrypted

30

One-Time Pad Decryption (with the wrong pad)

Decryption.

 Convert encrypted message to binary.

g

X

W

K

100000

010111

111011

111010

010110

110111

101111

111011

001010

encrypted

base64

31

One-Time Pad Decryption (with the wrong pad)

Decryption.

 Convert encrypted message to binary.

e Use wrong N bits (bogus one-time pad).

g

X

W

K

100000

010111

111011

111010

010110

110111

101111

111011

001010

101000

011100

110101

101111

010010

111001

100101

101010

001010

encrypted
base64

wrong bits

32

One-Time Pad Decryption (with the wrong pad)

Decryption.

 Convert encrypted message to binary.

» Use wrong N bits (bogus one-time pad).
» Take bitwise XOR of two bitstrings.

g

X

W

K

100000

010111

111011

111010

010110

110111

101111

111011

001010

101000

011100

110101

101111

010010

111001

100101

101010

001010

001000

001011

001110

010101

000100

001110

001010

010001

000000

encrypted
base64
wrong bits

XOR

33

One-Time Pad Decryption (with the wrong pad)

Decryption.

 Convert encrypted message to binary.

» Use wrong N bits (bogus one-time pad).
» Take bitwise XOR of two bitstrings.
 Convert back into text: Oops.

g

X

W

K

100000

010111

111011

111010

010110

110111

101111

111011

001010

101010

110000

000011

100000

011011

000011

101110

011010

101111

001010

100111

111000

011010

001101

110100

000001

100001

100101

K

N

B

h

encrypted
base64
wrong bits

XOR

wrong message
[usually gibberish]

34

Eve's Problem (one-time pads)

Key point: Without the pad, Eve cannot understand the message.

But Eve has a computer. Why not try all possible pads?

One problem: it might take a long time [stay tuned].

Worse problem: she would see all possible messages!
* 54 bits
« 2°% possible messages, all different.
* 2°% possible encoded messages, all different.
* No way for Eve to distinguish real message
from any other message.

One-time pad is "provably secure”.

gX76W3v7K

gX76W3v7L

gX76W3v7I

gwDgbDuav

Kn4aNOBhl

tTtpWk+1E

NEWTATTOO

yT25a5i/S

SENDMONEY

[1177777+

fo7FpIQEQD

[111177177

fo7FpIQEl

35

Goods and Bads of One-Time Pads

Good.

* Easily computed by hand.
* Very simple encryption/decryption processes.

* Provably unbreakable if bits are truly random. [Shannon, 1940s]
AN

eavesdropper Eve sees only random bits

"one time" means one time only

Bad. \
* Easily breakable if pad is re-used.
* Pad must be as long as the message.
* Truly random bits are very hard to come by.
* Pad must be distributed securely.

impractical for Web commerce

a Russian one-time pgg

Pseudo-Random Bit Generator

Practical middle-ground.
* Make a "random” bit generator gadget.
* Alice and Bob each get identical small gadgets
[same gadget works for both]
* Alice and Bob also each get identical books of small seeds.

Y\ins‘read of identical

large one-time pads

Goal. Small gadget that produces a long sequence of bits.

"use seed 92 to
decrypt the contents
of this DVD"

37

Pseudo-Random Bit Generator

Small deterministic gadgets that produce long sequences of pseudo-random bits:
* Enigma
o Linear feedback shift register.
* Linear congruential generator.
* Blum-Blum-Shub generator.
* [many others have been invented]

Pseudo-random? Bits are not really random:
* Bob's and Alice's gadgets must produce the same bits from the same seed.
* Bits must have as many properties of random bits as possible (to foil Eve).

Ex 1. approx 1/2 Os and 1/2 1s
Ex 2. approx 1/4 each of 00, 01, 10 11

“ Anyone who considers arithmetical methods of

I

producing random digits is, of course, in a state of sin.
— John von Neumann (left)

— ENIAC (right)

38

Shift Register

Shift register terminology.
*Bit: Oorl
* Cell: storage element that holds one bit.
* Register: sequence of cells.
» Seed: initial sequence of bits.

 Shift register: when clock ticks, bits propagate one position to left.

—
register

time

time t + 1

39

Linear Feedback Shift Register (LFSR)

{8, 10} linear feedback shift register.
 Shift register with 11 cells.
« Bit by is XOR of previous bits bg and by,

e Pseudo-random bit = b,.

feedback

xor

b, b, bg b, b, b, b, b, b, b, b, time t

40

Random Numbers

"looks random to me"

255 000s
256 001s
255 010s
256 0l1l1s

Q. Are these 2000 numbers random?
If not, what is the pattern?

1100100100111101101110010110101110011000101111110100100001001101001011110011001001111111011100
0001010110001000011101010011010000111100100110011101111111010100000100001000101001010100011000
0010111100010010011010110111100011010011011100111101011110010001001110101011101000001010010001
0001101010101110000000101100000100111000101110110100101011001100001111111001100000111111000110
0001101111001110100111101001110010011101110111010101010100000000001000000001010000001000100001
0101010010000000110100000111001000110111010111010100010100001010001001000101011010100001100001
0011110010111001110010111101110010010101110110000101011100100001011101001001010011011000111101
1101100101010111100000010011000010111110010010001110110101101011000110001110111101101010010110
0001100111001111110111100001010011001000111111010110000100011100101011011100001101011001110001
1111011011000101101110100110101001111000011100110011011111111101000000010010000010110100010011
0010101111110000100001100101001111100011100011011011011101101101010110110000011011100011101011
0110100011011001011101111001010100111000001110110001101011101110001010101101000000110010000111
1101001100010011111010111000100010110101010011000000111110000110001100111101111110010100001110
0010011011010111101100010010111010110010100011110001011001101001111110011100001111011001100101
1111111001000000111010000110100100111001101110111110101010001000000101010000100000100101000101
1000101001110100011101001011010011001100111111111110000000001100000001111000001100110001111111
1011000000101110000100101100101100111100111110011110001111001101100111110111110001010001101000
1011100101001011100011001011011111001101000111110010110001110011101101111010110100100011001101
0111111100010000011010100011100001011011001001101111011110100101001001100011011111011101000101
0100101000001100010001111010101100100000111101000110010010111110110010001011110101001001000011
0110100111011001110101111101000100010010101010110000000011100000011011000011101110011010101111
10000010001100010101111010

A. No. This is output of {8, 10} LFSR with seed 01101000010!

41

Encryption.

LFSR Encryption

 Convert text message to N bits.
* Initialize LFSR with given seed
* Generate N bits with LFSR.

» Take bitwise XOR of two bitstrings.
* Convert binary back into text.

Base64 Encoding

A
B

0 000000
1 000001

N

D

M

@)

N

Y

010010

000100

001101

000011

001100

001110

001101

000100

011000

110010

010011

110110

111001

011010

111001

100010

111111

010010

100000

010111

111011

111010

110111

101111

111011

001010

g

X

6

3

K

message
base64
LFSR bits
XOR

encrypted

42

Decryption.

LFSR Decryption

 Convert encrypted message to binary.

e Initialize identical LFSR with same seed
» Generate N bits with LFSR.
» Take bitwise XOR of two bitstrings.
 Convert back into text.

Base64 Encoding

A
B

0 000000
1 000001

g

X

W

K

100000

010111

111011

111010

010110

110111

101111

111011

001010

110010

010011

110110

111001

011010

111001

100010

111111

010010

010010

000100

001101

000011

001110

001101

000100

011000

E

N

D

o)

N

E

Y

encrypted

base64
LFSR bits
XOR

message

43

Key properties of LFSRs

Property 1: A zero fill (all Os) producesallOs. FeT ool ool ololol oo o

* Don't use all Os as a seed! ?‘9
l
* Fill of all Os will not otherwise occur. ofofof[ofofo o o] o]0 KN
Ex: (1, 2) LFSR
Property 2: Bitstream must eventually cycle. 001
o 2N-1 nonzero fills in an N-bit register. 010
, , 101
* Future output completely determined by current fill. 011
111
110
Property 3: Cycle length in an N-bit register is at most 2N-1, 100
001 23-1=7

* Could be smaller; cycle length depends on tap positions.

* Need higher math (theory of finite groups) to know tap positions for given N.

Bottom line: 11-bit register generates at most 2047 bits before cycling,
so use a longer register (say, N = 61).

challenge for the bored: what tap positions?

44

Eve's Problem (LFSR encryption/decryption)

Key point: Without the (short) seed
Eve cannot understand the (long) message.

But Eve has a computer. Why not try all possible seeds?
 Seeds are short, messages are long. assume Eve has a machine
* All seeds give a tiny fraction of all messages. (knows LFSR length and taps)

* Extremely likely that all but real seed will produce gibberish.

Bad news (for Eve): There are still oo many possibilities!
* Ex: 61-bit register implies 2°! possibilities.
o If Eve could check 1 million seeds per second,
it would take her 730 centuries to try them all!

Exponential growth dwarfs technological improvements [stay tuned].
* 1000 bits: 2199 possibilities. (20,2%)
« Age of the universe in microseconds: 27° \

45

Goods and Bads of LFSRs

Good.

* Easily computed with simple machine.
* Very simple encryption/decryption processes.

* Bits have many of the same properties as random bits.
* Scalable: 20 cells for 1 million bits; 30 cells for 1 billion bits.
[but need theory of finite groups to know where to put taps]

a commercially available LFSR

Bad.
* Still need secure, independent way to distribute LFSR seed.
* The bits are not truly random.
[bits in our 11-bit LFSR cycle after 2!! - 1 = 2047 steps]
» Experts have cracked LFSR encryption.
[need more complicated machines]

46

Other LFSR Applications

What else can we do with a LFSR?
* DVD encryption with CSS.

* DVD decryption with DeCSS!
 Subroutine in military cryptosystems.

/* efdtt.c Author: Charles M. Hannum <root@ihack.net>
/* Usage is: cat title-key scrambled.vob | efdtt >clear.vob

#define m(i) (x[1]*s[i+84])<<

unsigned char x[5] ,Y,s[2048] ;main (
n) {for(read(0,x,5) ;read(0,s ,n=2048
); write(1l ,S,n) Yif (s
[y=s [13]%8+20] /16%4 ==) {int
i=m(1)17 *256 +m(0) 8,k =m(2)
0,J= m(4) 17 m(3) 92k * 2-k%8
~8,a =0,c =26; for (s[yl -=16;
--c;j *=2)a= a*2”7ig 1,i=i /2*j&l
<<24;for (j= 127; ++j<n;c=c>
y)
c

+=y=i*i/87i>>44i>>12,
i=i>>84y<<17,a”*=a>>14,y=a*a*8%a<<6,a=a
>>84y<<9,k=s[j],k ="TWo~'G_\216" [k
&7]1+2~"cr3sfwébv; *k+>/n." [k>>4] *2~k*257/
8,s[j1=k” (k&k*2&34) *6*c+~y
71}

http://www.cs.cmu.edu/~dst/DeCSS/Gallery

*/

47

Typical Exam Question (TEQ) on LFSRs 1

Give first 10 steps of {3, 4} LFSR with initial fill 00001.

48

TEQ on LFSRs 2

Goal. Decrypt/encrypt 300 characters (1800 bits).

Challenge. TIs it a good idea to use an 11-bit LFSR?

A. Yes, no problem.

B. No, the bits it produces are not truly random.

C. No, need a longer LFSR.

D. No, experts have cracked LFSRs

49

LFSR and "General Purpose Computer"

Important properties.
* Built from simple components.
* Scales to handle huge problems.
* Requires a deep understanding to use effectively.

control start, stop, load same
clock regular pulse 2.8 GHz pulse
memory 11 bits 168
input seed sequence of bits
computation shift, XOR logic, arithmetic, ...
output pseudo-random bits Sequence of bits

Critical difference. General purpose machine can be programmed to
simulate ANY abstract machine.

50

A Profound Idea

Programming. Can write a Java program to simulate the operations of any
abstract machine.

* Basis for theoretical understanding of computation. [stay funed]

* Basis for bootstrapping real machines into existence. [stay tuned]

Stay tuned. See Assignment b.

public class LFSR

{
private int[] seed;
private int tap;
private int N;

public LFSR(String seed, int tap) { .. } $ java LFSR

- 1100100100111101101110010110101
public int step() { ..} 1100110001011111101001000010011
0100101111001100100111. ..

public static void main(String[] args)
{
LFSR lfsr = new LFSR("01101000010", 8);
for (int i = 0; i < 2000; i++)
StdOut.println(lfsr.step())

51

A Profound Question
Q. What is a random number?

LFSR does not produce random numbers.
* It is a very simple deterministic machine.

* Not obvious how to distinguish the bits it produces from random.

» Experts have figured out how to do so.
Q. Are random processes found in nature?

* Motion of cosmic rays or subatomic particles?
* Mutations in DNA?

Q. Is the natural world a (not-so-simple) deterministic machine?

“ God does not play dice. ”
— Albert Einstein

52

