
Programming language components

•  syntax: grammar rules for defining legal statements
–  what's grammatically legal? how are things built up from smaller things?

•  semantics: what things mean
–  what do they compute?

•  statements: instructions that say what to do
–  compute values, make decisions, repeat sequences of operations

•  variables: places to hold data in memory while program is running
–  numbers, text, ...

•  most languages are higher-level and more expressive than the
assembly language for the toy machine
–  statements are much richer, more varied, more expressive
–  variables are much richer, more varied
–  grammar rules are more complicated
–  semantics are more complicated

•  but it's basically the same idea

Why study / use Javascript?

•  all browsers process Javascript
–  many web services rely on Javascript in browser
–  can use it in your own web pages
–  can understand what other web pages are doing (and steal from them)

•  easy to start with
•  easy to do useful things with it
•  programming ideas carry over into other languages

•  Javascript has limitations:
–  very little use outside of web pages
–  many irregularities and surprising behaviors
–  no browser matches ostensible standards exactly
–  doesn't illustrate much about how big programs are built

Javascript components
•  Javascript language

–  statements that tell the computer what to do
get user input, display output, set values, do arithmetic,
test conditions, repeat groups of statements, …

•  libraries, built-in functions
–  pre-fabricated pieces that you don't have to create yourself

alert, prompt, math functions, text manipulation, ...
•  access to browser and web pages

–  buttons, text areas, images, page contents, ...

•  you are not expected to remember syntax or other details
•  you are not expected to write code in exams

(though a bit in problem sets and labs)

•  you are expected to understand the ideas
–  how programming and programs work
–  figure out what a tiny program does or why it's broken

Basic example #1: join 2 names (name2.html)

•  Javascript code appears in HTML file between <script> tags
 <script language=javascript> ... </script>
•  shows variables, dialog boxes, an operator

<html>
<body>
<P> name2.html: joins 2 names
<script>
 var firstname, secondname, result;
 firstname = prompt("Enter first name");
 secondname = prompt("Enter last name");
 result = firstname + secondname; // + means "join" here
 alert("hello, " + result); // and here
</script>

Basic example #2: add 2 numbers (add2.html)

•  dialog boxes, variables, arithmetic, conversion

<html>
<body>
<P> add2.html: adds 2 numbers
<script>
 var num1, num2, sum;
 num1 = prompt("Enter first number");
 num2 = prompt("Enter second number");
 sum = parseInt(num1) + parseInt(num2); // "+" means "add"
 alert(sum);
</script>

parseInt(...) converts a sequence of characters into its integer value
there's also a parseFloat(…) for floating point numbers

Adding up lots of numbers: addup.html
•  variables, operators, expressions, assignment statements
•  while loop, relational operator (!= "not equal to")

<html>
<body>
<script>
 var sum = 0;
 var num;
 num = prompt("Enter new value, or 0 to end");
 while (num != 0) {
 sum = sum + parseInt(num);
 num = prompt("Enter new value, or 0 to end");
 }
 alert("Sum = " + sum);
</script>

Find the largest number: max.html

•  needs an If to test whether new number is bigger
•  needs another relational operator
•  needs parseInt or parseFloat to treat input as a number

 var max = 0;
 var num;
 num = prompt("Enter new value, or 0 to end");
 while (num != 0) {
 if (parseFloat(num) > max)
 max = num;
 num = prompt("Enter new value, or 0 to end");
 }
 document.write("<P> Max = " + max);

Variables, constants, expressions, operators

•  a variable is a place in memory that holds a value
–  has a name that the programmer gave it, like sum or Area or n
–  in Javascript, can hold any of multiple types, most often

 numbers like 1 or 3.14, or
 sequences of characters like "Hello" or "Enter new value"

–  always has a value
–  has to be set to some value initially before it can be used
–  its value will generally change as the program runs
–  ultimately corresponds to a location in memory
–  but it's easier to think of it just as a name for information

•  a constant is an unchanging literal value like 3 or "hello"
•  an expression uses operators, variables and constants
 to compute a value

 3.14 * rad * rad
•  operators include + - * /

Computing area: area.html
 var rad, area;
 rad = prompt("Enter radius");
 while (rad != null) {
 area = 3.14 * rad * rad;
 document.write("<P> radius = " + rad + ", area = " + area);
 rad = prompt("Enter radius");
 }

•  how to terminate the loop
–  0 is a valid data value
–  prompt() returns null for Cancel and "" for OK without typing any text

•  string concatenation to build up output line
•  there is no exponentiation operator so we use multiplication

Types, declarations, conversions

•  variables have to be declared in a var statement

•  each variable holds information of a specific type
–  really means that bits are to be interpreted as info of that type
–  internally, 3 and 3.00 and "3.00" are represented differently

•  Javascript usually infers types from context, does conversions
automatically
–  "Sum = " + sum

•  sometimes we have to be explicit:
–  parseInt(...) if can't tell from context that string is meant as an

integer
–  parseFloat(...) if it could have a fractional part

Making decisions and repeating statements

•  if-else statement makes decisions
–  the Javascript version of decisions written with ifzero, ifpos, ...

if (condition is true) {
 do this group of statements

} else {
 do this group of statements instead
}

•  while statement repeats groups of statements
–  a Javascript version of loops written with ifzero and goto

while (condition is true) {
 do this group of statements
}

if-else examples (sign.html)

•  can include else-if sections for a series of decisions:

 var num = prompt("Enter number");
 while (num != null) {
 num = parseInt(num);
 if (num > 0) {
 alert(num + " is positive");
 } else if (num < 0) {
 alert(num + " is negative");
 } else {
 alert(num + " is zero");
 }
 num = prompt("Enter number");
 }

"while loop" examples
•  counting or "indexed" loop:
 i = 1;
 while (i <= 10) {

 // do something (maybe using the current value of i)
 i = i + 1;
 }

•  "nested" loops (while.html):
var n = prompt("Enter number");
while (n != null) { // "!=" means "is not equal to"
 i = 0;
 while (i <= n) {
 document.write("
" + i + " " + i*i);
 i = i + 1;
 }
 n = prompt("Enter number");
}

Functions

•  a function is a group of statements that does some computation

–  the statements are collected into one place and given a name
–  other parts of the program can "call" the function

 that is, use it as a part of whatever they are doing
–  can give it values to use in its computation (arguments or parameters)
–  computes a value that can be used in expressions
–  the value need not be used

•  Javascript provides some useful built-in functions
–  e.g., prompt, alert, ...

•  you can write your own functions

Function examples

•  syntax
 function name (list of "arguments") {

 the statements of the function
}

•  function definition:
 function area(r) {
 return 3.14 * r * r;
 }

•  using ("calling") the function:
 rad = prompt("Enter radius");
 alert("radius = " + rad + ", area = " + area(rad));

 alert("area of CD =" + area(2.3) - area(0.8));

Ring.html
 var r1, r2;
 r1 = prompt("Enter radius 1");
 while (r1 != null) {
 r2 = prompt("Enter radius 2");
 alert("area = " + (area(r1) - area(r2))); // parens needed!
 r1 = prompt("Enter radius 1");
 }

 function area(r) {
 return 3.14 * r * r;
 }

Why use functions?

•  if a computation appears several times in one program
–  a function collects it into one place

•  breaks a big job into smaller, manageable pieces
–  that are separate from each other

•  defines an interface
–  implementation details can be changed as long as it still does the same

job
–  different implementations can interoperate

•  multiple people can work on the program
•  a way to use code written by others long ago and far away

–  most of Javascript's library of useful stuff is accessed through
functions

•  a good library encourages use of the language

A working sort example
 var name, i = 0, j, temp;
 var names = new Array();

 // fill the array with names
 name = prompt("Enter new name, or OK to end");
 while (name != "") {
 names[names.length] = name;
 name = prompt("Enter new name, or OK to end");
 }
 // insertion sort
 for (i = 0; i < names.length-1; i++) {
 for (j = i+1; j < names.length; j++) {
 if (names[i] > names[j]) {
 temp = names[i];
 names[i] = names[j];
 names[j] = temp;
 }
 }
 }
 // print names
 for (i = 0; i < names.length; i++) {
 document.write("
 " + names[i]);
 }

Summary: elements of (most) programming languages

•  constants: literal values like 1, 3.14, "Error!"
•  variables: places to store data and results during computing
•  declarations: specify name (and type) of variables, etc.
•  expressions: operations on variables and constants to produce new

values
•  assignment: store a new value in a variable
•  statements: assignment, input/output, loop, conditional, call
•  conditionals: compare and branch; if-else
•  loops: repeat statements while a condition is true
•  functions: package a group of statements so they can be called/

used from other places in a program
•  libraries: functions already written for you

How Javascript works

•  recall the process for Fortran, C, etc.:
 compiler -> assembler -> machine instructions
•  Javascript is analogous, but differs significantly in details

•  when the browser sees Javascript in a web page (<script> tags)
–  passes the Javascript program to a Javascript compiler

•  Javascript compiler
–  checks for errors
–  compiles the program into instructions for something like the toy machine,

but richer, more complicated, higher level
–  runs a simulator program (like the toy) that interprets these instructions

•  simulator is often called an "interpreter" or a "virtual machine"
–  probably written in C or C++ but could be written in anything

•  browser and simulator interact
–  when an event like click happens, browser tells Javascript ("onClick")
–  Javascript tells browser to do things (e.g., pop up dialog box for alert)

The process of programming

•  what we saw with Javascript or Toy is like reality, but very small

•  figure out what to do
–  start with a broad specification
–  break into smaller pieces that will work together
–  spell out precise computational steps in a programming language

•  build on a foundation (rarely start from scratch)
–  a programming language that's suitable for expressing the steps
–  components that others have written for you

functions from libraries, major components, ...
–  which in turn rest on others, often for several layers
–  runs on software (the operating system) that manages the machine

•  it rarely works the first time
–  test to be sure it works, debug if it doesn't
–  evolve as get a better idea of what to do, or as requirements change

Real-world programming

•  the same thing, but on a grand scale
–  programs may be millions of lines of code

typical productivity: 1-10K lines/year/programmer
–  thousands of people working on them
–  lifetimes measured in years or even decades

•  big programs need teams, management, coordination, meetings, …
•  schedules and deadlines
•  constraints on how fast the program must run, how much memory

it can use
•  external criteria for reliability, safety, security, interoperability

with other systems, …

•  maintenance of old ("legacy") programs is hard
–  programs must evolve to meet changing environments and requirements
–  machines and tools and languages become obsolete
–  expertise disappears

