
Reprise: what an operating system does

•  manages CPUs, schedules and coordinates running programs
–  switches CPU among programs that are actually computing
–  suspends programs that are waiting for something (e.g., disk, network)
–  keeps individual programs from hogging resources

•  manages memory (RAM)
–  loads programs in memory so they can run
–  swaps them to disk and back if there isn’t enough RAM (virtual memory)
–  keeps separate programs from interfering with each other
–  and with the operating system itself (protection)

•  manages and coordinates input/output to devices
–  disks, display, keyboard, mouse, network, ...
–  provides fairly uniform interface to disparate devices

•  manages files on disk (file system)
–  provides hierarchy of folders/directories and files for storing

information

How applications use the operating system

•  operating system provides services to be accessed by application
programs
–  Unix "system calls", Windows Application Programming Interface ("API")

"what is the exact time?"
"allocate more memory to me"
"read N bytes from file F into memory location M"
"write N bytes from memory location M into file F"
"establish a network connection to www.princeton.edu"
"write N bytes to the network connection"
“I’m all done; get rid of me”

•  operating system provides an interface for applications to use
–  programs access machine capabilities only through this interface
–  different physical hardware can provide the same interface
–  programs can be moved to any system that provides the same interface
–  different operating systems can provide the same interface
–  one operating system can simulate the interface provided by another

•  operating system hides details of specific hardware

Example of system-call level coding

•  C program to copy input to output ("copy" command)
•  read, write, exit are system calls

 main() {
 char buf[8192];
 int n;
 while ((n = read(0, buf, sizeof(buf))) > 0)
 write(1, buf, n);
 exit(0);
 }

Software is organized into "layers"

•  each layer presents an interface that higher layers can use
–  defines a "platform" for putting more on top
–  insulates the higher layer from how the lower layer is implemented
–  often called "Application Programming Interface" or API

•  operating system ("kernel")
–  lowest software layer, on top of hardware

(usually: virtual machine is on top of another program, e.g., an operating system)
–  presents its capabilities as system calls

•  libraries
–  code to be used as building blocks in programs
–  present their capabilities as APIs

•  applications
–  e.g., browser, word processor, mailer, compiler, directory lister, ...
–  use libraries and system calls through APIs

Layering
•  an application generally

calls multiple libraries
–  might not make direct

system calls
•  a library generally calls

other libraries
•  library and system call

levels define interfaces
(APIs)

•  programmers may not know
what is "library" and what
is "system call"

applications

hardware

operating system

libraries

system calls

library calls

Interface issues
•  application/kernel boundary
•  application programming interfaces
•  interface ownership
•  independent implementations
•  platforms
•  middleware
•  virtual machines

application

hardware

operating system

library

system calls

library calls

Where's the line between OS and applications?

•  there are lots of ways to create layers and glue them together
•  many choices of what to include in kernel or put in library

•  “operating system” and “kernel” are not well defined
–  “Windows” might mean everything (OS, applications, etc)
–  “Windows OS” usually means the part that controls the rest
–  "Linux" may mean "kernel" or may mean "kernel + applications"
–  dividing line is not always clear

•  "kernel"
–  minimal part that runs regardless of what else the system is being used

for or is doing
–  provides essential, central services
–  controls shared resources
–  protects information, enforces privacy and security
–  user programs can only use it through its defined interfaces
–  usually runs in hardware-supported protected mode

Microsoft antitrust case (1994-2011)

•  “operating system” and “kernel” are not well defined
–  “Windows” might mean everything (OS, applications, etc)
–  “Windows OS” usually means the part that controls the rest

•  what is operating system and what is application?

•  Dept of Justice v Microsoft was partly about this question
–  is Internet Explorer part of the operating system?
–  will the system be damaged or restricted if IE is removed or replaced?

•  Microsoft said Yes, DoJ said No
–  http://www.usdoj.gov/atr/cases/ms_index.htm

What's an API?

 Operating systems perform many functions, including
allocating computer memory and controlling peripherals
such as printers and keyboards. Operating systems also
function as platforms for software applications. They do
this by "exposing" — i.e., making available to software
developers — routines or protocols that perform certain
widely-used functions. These are known as Application
Programming Interfaces, or "APIs."

Excerpted from Final Judgment
State of New York, et al v. Microsoft Corporation
US District Court, District of Columbia, Nov 1, 2002

API fragment

Sample Java API (tiny excerpt)

Independent implementations of an interface

•  who owns an interface?
•  can interfaces be owned?

•  company A sells something (hardware or software)
•  company A publishes (widely) the API for programming it

–  with the intent that third parties will develop applications for the thing
–  and thus make it more attractive so company A will sell more

•  company B uses A's interface definition to make a cheaper
version of the thing that works the same
–  so all the third-party applications will run on B's cheaper version
–  thus cutting into A's market

•  company A sues company B

•  who should win?

Oracle v Google (May 2010)

•  partly patent, partly copyright
•  patent part thrown out
•  remaining copyright part mostly about Java APIs

•  did Google violate Oracle’s copyright by re-using the APIs
verbatim?

•  (re-implementing the code behind them was not at issue)

Android phone organization

apps

hardware

operating system

libraries

system calls

library calls

virtual machine

Java APIs written in Java

Platforms, middleware, virtual machines

•  platform: hardware or software
on which applications can run

•  middleware: uses OS interface
but exposes its own APIs to
developers, so applications using
it can move to any OS where
the middleware has been moved
 (e.g., browser-based software)

•  virtual machine: software that
mimics behavior of hardware so
other software can run on it
 (can be above the operating

system too, as in VMWare)
virtual machine

application

hardware

operating system

library

system calls

library calls

middleware

Cloud computing

•  'Cloud' has been a go-to metaphor for almost as long as the
Internet has existed, conveying a sense that the Internet was
intangible and bigger than the sum of its parts."

(Wall Street Journal, 9/23/08)

•  software services delivered via the Internet
–  Gmail, Yahoo mail, ...
–  Facebook, Twitter, Flickr, …
–  Google Docs
–  Windows Live, Office 360
–  Amazon Web Services (AWS)

•  most cloud services have an API for access by programs

