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1 More Useful Properties of Graph Entropy

In the previous lecture, we saw that graph entropy is subadditive. More useful properties follow.

Lemma 1 (Monotonicity). If G = (V,E) and F = (V,E′) are graphs on the same vertex set such that
E ⊆ E′, then H(G) ≤ H(F ).

Proof Let (X,Y ) be random variables achieving H(F ). This implies that Y is an independent set in F
and in G. Therefore H(G) ≤ I(X;Y ) = H(F ).

Next, we consider what happens to the graph entropy when taking disjoint unions of graphs. The
following fact is useful for the next proof.

Fact 2. For all random variables X,Y and functions f , I(X, f(X);Y ) = I(X;Y ).

Proof This follows from the chain rule: I(X, f(X);Y ) = I(X;Y )+I(f(X);Y |X) = I(X;Y )+H(f(X)|X)−
H(f(X)|X,Y ) = I(X;Y ).

Lemma 3 (Disjoint union). If G1, . . . , Gk are the connected components of G, and for each i, ρi :=
|V (Gi)|/|V (G)| is the fraction of vertices in Gi, then

H(G) =

k∑
i=1

ρiH(Gi).

Proof First, we shall show that H(G) ≥
∑
ρiH(Gi). Let X,Y be the random variables achieving H(G).

We can write Y = Y1, . . . , Yk, where each Yi is the intersection Y with the vertices of Gi. Define the function
l(x), where l(x) = i if x ∈ V (Gi). Then

H(G) = I(X;Y ) = I(X;Y1, . . . , Yk)

= I(X, l(X);Y1, . . . , Yk) (fact 2)

= I(l(X);Y1, . . . , Yk) + I(X;Y1, . . . , Yk|l(X))

≥ I(X;Y1, . . . , Yk|l(X)) (1.)

=
∑k

i Pr(l(X) = i) I(X;Y1, . . . , Yk|l(X) = i)

=
∑k

i ρi (I(X;Yi|l(X) = i) + I(X;Y1, . . . , Yi−1, Yi+1, . . . , Yk|l(X) = i, Yi))

≥
∑k

i ρiI(X;Yi|l(X) = i) (2.)

≥
∑k

i ρiH(Gi). (3.)

where the last inequality follows from the fact that in (X,Yi)|l(X) = i, X is a uniform vertex of V (Gi),
and Yi is an independent set containing X.

∗Based in part on lecture notes by Anup Rao, Punyashloka Biswal and Lukas Svec.
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Now we proceed to the upper bound. For i = 1, . . . , k, let pi(x, yi) be the minimizing distribution in the
definition of H(Gi). Then we can define the following joint distribution on X,Y1, . . . , Yk:

P (x, y1, . . . , yk) = p1(y1)p2(y2) . . . pk(yk)

k∑
i

ρipi(x|yi).

We choose Y1, . . . , Yk independently according to the marginal distributions of p1, . . . , pk, then pick a compo-
nent i according to the distribution ρ1, ρ2, . . . , ρk and finally sample X from that component with conditional
distribution pi(x|yi). We can see that X is selected from component i with probability ρi = |V (Gi)|/|V (G)|,
and that conditioned on it being selected from component i, the distribution on (X,Yi) is pi. Thus X is
distributed uniformly on V (G). We can verify that for this choice, all the inequalities above hold with
equality:

1. We choose the component in which to put X according to the weights ρi, and independently choose
the independent sets Y1, . . . , Yk. Thus I(l(X);Y1, . . . , Yk) = 0.

2. Conditioned on l(X) = i, the subsets Y1, . . . , Yi−1, Yi+1, . . . , Yk are independent of X,Yi. Thus,
I(X;Y1, . . . , Yi−1, Yi+1, . . . Yk | l(X) = i, Yi) = 0.

3. The last inequality is tight since conditioned on l(X) = i, the joint distribution X,Yi|l(X) = i is the
minimizing distribution for the graph entropy.

2 A lower bound for perfect hash functions

Graph entropy can be used to improve the obvious lower bound on good hash functions.

Definition 4 (k-perfect hash functions). Given a family of functions H = {h : [N ]→ [b]}, we say that H is
a k-perfect hash family, if ∀ S ⊆ [N ], |S| = k, where |S| = k, there exists h ∈ H such that h is injective on
S.

Any k-tuple can be distinguished by at least one hash function. Let t = |H| be the size of the k-perfect
family. How small can t be?

Claim 5. t ≥ logN/ log b.

Proof
For any two x1, x2 ∈ [N ] we must have (h1(x1), . . . , ht(x1)) 6= (h1(x2), . . . , ht(x2)). By the pigeonhole

principle it follows that

N ≤ bt =⇒ t ≥ logN

log b
.

Claim 6. Suppose b ≥ 100k2, then there is a k-perfect hash function family of size t = O(k logN).

Sketch of Proof Pick t random functions and let them be in the family. Then for any fixed set S of k
elements, the probability that a random hash function h is injective on S is

b

b

b− 1

b

b− 1

b
. . .

b− k + 1

b
≥
(

1− k

b

)k

≥ 9

10
(constant).

2



The probability, that all t hash functions are non-injective then is ( 1
10 )t. The total number of such sets

S is at most Nk, and by the union bound

P (A1 ∪ · · · ∪AT ) ≤
T∑

i=1

P (Ai),

the probability that some S is not mapped invectively by all h is

∑
S⊆[N ]

(
1

10

)t

≤ Nk

(
1

10

)t

= 2k logN

(
1

10

)t

� 1,

which leads to t = O(k logN).
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