
Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 1

COS 597A:
Principles of

Database and Information Systems

SQL:
Overview and highlights

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 2

The SQL Query Language

  Structured Query Language
  Developed by IBM (system R) in the 1970s
  Need for a standard since it is used by many vendors
  Standards:

•  SQL-86
•  SQL-92 (major revision)
•  SQL-99 (major extensions)
•  SQL 2003 (XML ↔ SQL)
•  SQL 2008
•  continue enhancements

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 3

Creating Relations in SQL
  CREATE TABLE Movie (

name CHAR(30),
producer CHAR(30),
rel_date CHAR(8),
rating CHAR,
PRIMARY KEY (name, producer, rel_date))

  CREATE TABLE Employee
 (SS# CHAR(9),
 name CHAR(30),
 addr CHAR(50),

 startYr INT,
 PRIMARY KEY (SS#))

  CREATE TABLE Assignment
 (position CHAR(20),
 SS# CHAR(9),
 manager SS# CHAR(9),
 PRIMARY KEY (position),

 FOREIGN KEY(SS# REFERENCES Employee),
 FOREIGN KEY (managerSS# REFERENCES Employee))

Observe that the type
(domain) of each
attribute is specified, and
enforced by the DBMS
whenever tuples are
added or modified.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 4

Referential Integrity in SQL
  SQL-92 on support all 4 options on deletes and updates.

•  Default is NO ACTION (delete/update is rejected)
•  CASCADE (also delete all tuples that refer to deleted

tuple)
•  SET NULL / SET DEFAULT (sets foreign key value of

referencing tuple)
CREATE TABLE Acct

 (bname CHAR(20) DEFAULT ‘main’,
 acctn CHAR(20),
 bal REAL,
 PRIMARY KEY (acctn),
 FOREIGN KEY (bname) REFERENCES Branch
 ON DELETE SET DEFAULT)

 BUT individual implementations may NOT support

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 5

Primary and Candidate Keys in SQL

  Possibly many candidate keys (specified using
UNIQUE), one of which is chosen as the primary key.

CREATE TABLE Book
 (isbn CHAR(10)
 title CHAR(100),
 ed INTEGER,
 pub CHAR(30),
 date INTEGER,
 PRIMARY KEY (isbn),
 UNIQUE (title, ed))

  There at most one book with
a given title and edition –
date, publisher and isbn are
determined

  Used carelessly, can prevent
the storage of database
instances that arise in
practice! Title and ed suffice?

 UNIQUE (title, ed, pub)?

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 6

Basic SQL Query

•  from-list A list of relation names (possibly with a
range-variable after each name).

•  select-list A list of attributes of relations in from-
list

•  qualification Comparisons (Attr op const or Attr1
op Attr2, where op is one of <, >,=, ≤, ≥, ≠)
combined using AND, OR and NOT.

•  DISTINCT is an optional keyword indicating that
the answer should not contain duplicates. Default
is that duplicates are not eliminated!

SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 7

Conceptual Evaluation Strategy

  Semantics of an SQL query defined in terms
of the following conceptual evaluation
strategy:

•  Compute the cross-product of from-list.
•  Discard resulting tuples if they fail qualifications.
•  Delete attributes that are not in select-list.
•  If DISTINCT is specified, eliminate duplicate rows.

  This strategy is probably the least efficient
way to compute a query! An optimizer will
find more efficient strategies to compute the
same answers.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 8

Example Instances

bname acctn bal
pu 33 356
nyu 45 500

bname bcity assets
pu Pton 10
nyu nyc 20
time sq nyc 30

instance of
Branch

instance of
Acct

  We will use these
instances of the
Acct and Branch
relations in our
examples.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 9

Example of Conceptual Evaluation
SELECT acctn
FROM Branch, Acct
WHERE Branch.bname=Acct.bname AND assets<20

bname bcity assets bname acctn bal

pu Pton 10 pu 33 356

pu Pton 10 nyu 45 500

nyu nyc 20 pu 33 356

nyu nyc 20 nyu 45 500

time sq nyc 30 pu 33 356

time sq nyc 30 nyu 45 500

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 10

Expressions and Strings

  Illustrates use of arithmetic expressions and
string pattern matching: Find pairs (Alumnus(a)
name and age defined by year of birth) for alums
whose dept. begins with “C” and ends with “S”.

  LIKE is used for string matching. `_’ stands for
any one character and `%’ stands for 0 or more
arbitrary characters.

SELECT name, age=2011-yrofbirth
FROM Alumni
WHERE dept LIKE ‘C%S’

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 11

Range Variables

  Refer to tuples from a relation
  Really needed only if the same relation appears

twice in the FROM clause. :

SELECT acctn
FROM Branch, Acct
WHERE Branch.bname=Acct.bname
 AND assets<20

SELECT R.acctn
FROM Branch S, Acct R
WHERE S.bname=R.bname
 AND assets<20

OR OR
SELECT R.acctn
FROM Branch as S, Acct as R
WHERE S.bname=R.bname
 AND assets<20

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 12

CREATE TABLE Acct
 (bname CHAR(20),
 acctn CHAR(20),
 bal REAL,
 PRIMARY KEY (acctn),
 FOREIGN KEY (bname REFERENCES Branch)

CREATE TABLE Branch CREATE TABLE Cust
 (bname CHAR(20), (name CHAR(20),

 bcity CHAR(30), street CHAR(30),
 assets REAL, city CHAR(30),
 PRIMARY KEY (bname)) PRIMARY KEY (name))

CREATE TABLE Owner
 (name CHAR(20),
 acctn CHAR(20),
 FOREIGN KEY (name REFERENCES Cust)
 FOREIGN KEY (acctn REFERENCES Acct))

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 13

Nested Queries

A very powerful feature of SQL: a WHERE clause can itself
contain an SQL query! (Actually, so can FROM and HAVING
clauses.)

What get if use NOT IN?
To understand semantics of nested queries, think of a nested

loops evaluation: For each Acct tuple, check the qualification by
computing the subquery.

SELECT A.bname
FROM Acct A
WHERE A.acctn IN (SELECT D.acctn
 FROM Owner D, Cust C
 WHERE D.name = C.name AND C.city=‘Rome’)

Find names of all branches with accts of cust. who live in Rome

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 14

Nested Queries with Correlation

  EXISTS is another set comparison operator, like IN.
  If UNIQUE is used, and * is replaced by E.name, finds acct no.s whose

owners own no more than one acct with a balance over 1000.
(UNIQUE checks for duplicate tuples; * denotes all attributes. Why
do we have to replace * by E.name?)

  Illustrates why, in general, subquery must be re-computed for each
Branch tuple.

Find acct no.s whose owners own at least
one acct with a balance over 1000

SELECT D.acctn
FROM Owner D
WHERE EXISTS (SELECT *
 FROM Owner E, Acct R
 WHERE R.bal>1000 AND R.acctn=E.acctn
 AND E.name=D.name)

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 15

More on Set-Comparison Operators

  We’ve already seen IN, EXISTS and UNIQUE. Can
also use NOT IN, NOT EXISTS and NOT UNIQUE.

  Also available: op ANY, op ALL, op from
  Find names of branches with assets at least as large as

the assets of some NYC branch:

> < = ≥ ≤ ≠, , , , ,

SELECT B.bname
FROM Branch B
WHERE B.assets ≥ ANY (SELECT Q.assets
 FROM Branch Q
 WHERE Q.bcity=’NYC’) Includes NYC branches?

note: key word SOME is interchangable with ANY - ANY easily confused with ALL

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 16

Division in SQL

SELECT R.wname
FROM Winners R
WHERE NOT EXISTS
 ((SELECT S.tourn
 FROM Winners S)
 EXCEPT
 (SELECT T.tourn
 FROM Winners T
 WHERE T.wname=R.wname))

Find tournament winners who have won all tournaments.

CREATE TABLE Winners
 (wname CHAR((30),
 tourn CHAR(30),
 year INTEGER)

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 17

Division in SQL – simple template

SELECT R.r1, R.r2, …, R.rm
FROM WholeRelation R
WHERE NOT EXISTS
 ((SELECT *
 FROM DivisorRelation Q
)
 EXCEPT
 (SELECT T.q1, T.q2, …T.qn
 FROM WholeRelation T
 WHERE R.r1= T.r1 ∧ R.r2 = T.r2 ∧ … ∧ R.rm = T.rm))

 Schemas
•  WholeRelation: (r1, r2, …, rm, q1, q2, …qn)
•  DivisorRelation: (q1, q2, …qn)
•  WholeRelation ÷ DivisorRelation: (r1, r2, …, rm)

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 18

Division in SQL – general template

SELECT
FROM
WHERE NOT EXISTS
 ((SELECT
 FROM
 WHERE)
 EXCEPT
 (SELECT
 FROM
 WHERE)

can do projections and other predicates within nested selects

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 19

Aggregate Operators

Significant extension of
relational algebra.

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

single column

  The first query is illegal!

  Is it poorest branch or
poorest branches?

SELECT S.bname, MIN (S.assets)
FROM Branch S

SELECT S.bname, S.assets
FROM Branch S
WHERE S.assets =
 (SELECT MIN (T.assets)
 FROM Branch T)

Example: Find name and city of the poorest branch

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 20

GROUP BY and HAVING

  Sometimes, we want to apply aggregate
operators to each of several groups of tuples.

Find the maximum assets of all branches in a city for
each city containing at least one branch.

  for each city - one name - aggregate assets

SELECT B.bcity, MAX(B.assets)
FROM Branch B
GROUP BY B.bcity

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 21

Queries With GROUP BY and HAVING

  The select-list contains (i) attribute names (ii)
terms with aggregate operations (e.g., MIN (S.age)).

•  The attribute list (i) must be a subset of grouping-list.
Intuitively, each answer tuple corresponds to a group,
and these attributes must have a single value per group.
(A group is a set of tuples that have the same value for
all attributes in grouping-list.)

SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 22

Conceptual Evaluation

  The cross-product of from-list is computed, tuples that fail
qualification are discarded, `unnecessary’ attributes are
deleted, and the remaining tuples are partitioned into
groups by the value of attributes in grouping-list.

  The group-qualification is then applied to eliminate some
groups. Expressions in group-qualification must have a
single value per group!

•  In effect, an attribute in group-qualification that is not an
argument of an aggregate op also appears in grouping-
list. (SQL does not exploit primary key semantics here!)

  One answer tuple is generated per qualifying group.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 23

What attributes are unnecessary?

 ↓
What attributes are necessary:

Exactly those mentioned in
SELECT, GROUP BY or HAVING clauses

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 24

Find the maximum assets of all branches in a city
for each city containing at least two branches.

SELECT B.bcity, MAX(B.assets)
FROM Branch B
GROUP BY B.bcity
HAVING COUNT(*) >1

empty WHERE

bname bcity assets
pu Pton 10
pmc Pton 8
nyu nyc 20
time sq
upenn

nyc
phili

30
50

bcity assets
Pton 10
Pton 8
nyc 20
nyc 30

bcity
Pton 10
nyc 30

2nd column of result
is unnamed.
(Use AS to name it.)

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 25

Joins in SQL

  SQL has both inner joins and outer join
  Use in "FROM … " portion of query
  Inner join variations

•  NATURAL INNER JOIN
•  Generalized versions

 Outer join includes tuples that don’t match
• fill in with nulls
• 3 varieties: left, right, full

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 26

• 

Outer Joins

 Left outer join of S and R:

•  take inner join of S and R (with whatever qualification)

•  add tuples of S that are not matched in inner join, filling
in attributes coming from R with "null"

 Right outer join:

•  as for left, but fill in tuple of R

 Full outer join:

•  both left and right

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 27

Example
Given
Tables:

NATURAL INNER JOIN:

NATURAL LEFT OUTER JOIN add:

NATURAL RIGHT OUTER JOIN add:

NATURAL FULL OUTER JOIN add both

sid residence

77 GC

35 Lawrence

21 Butler

sid dept

77 ELE

21 COS

42 MOL

77 GC ELE

21 Butler COS

35 Lawrence null

42 null MOL

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 28

Example Query

SELECT DISTINCT M.academic_dept., A.division
FROM study M NATURAL LEFT OUTER JOIN
 assignment A

What does this produce?

study:
(SS#,
academic_dept.,
adviser)

assignment:
(position,
division, SS#,
managerSS#)

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 29

General form SQL Query
 Now seen all major components

Structure of Query:
SELECT select-list
FROM from-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

UNION or INTERSECT or EXCEPT

SELECT select-list
FROM from-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

 … continuing general query form

Three set operations
Only these combine separate
SELECT statements.
All other SELECTs nested.

Scope of range variable
within SELECT… FROM…
and nested subqueries in it

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 30

Null Values

  represent unknown value or inapplicable attribute
  can test attribute value IS NULL or IS NOT NULL
  need a 3-valued logic (true, false and unknown) to

deal with null values in predicates.
•  comparisons with null evaluate to unknown
•  Boolean operations on unknown depend on truth table
•  can test IS UNKNOWN and IS NOT UNKNOWN

  meaning of constructs must be defined carefully
•  Example: WHERE clause eliminates rows that don’t

evaluate to true
•  aggregations, except COUNT(*), ignore nulls

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 31

Integrity Constraints (Review)
  An IC describes conditions that every legal

instance of a relation must satisfy.
•  Inserts/deletes/updates that violate IC’s are

disallowed.
•  Can be used to ensure application semantics (e.g., sid

is a key), or prevent inconsistencies (e.g., sname has to
be a string, age must be < 200)

  Types of IC’s: Domain constraints, primary key
constraints, candidate key constraints, foreign
key constraints, general constraints.

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 32

General Constraints

  Useful when
more general
ICs than keys
are involved.

CREATE TABLE GasStation
 (name CHAR(30),
 street CHAR(40),
 city CHAR(30),
 st CHAR(2),
 type CHAR(4),
 PRIMARY KEY (name, street, city, st),
 CHECK (type=‘full’ OR type=‘self’),
 CHECK (st <>’nj’ OR type=‘full’))

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 33

More General Constraints

  Can use
queries to
express
constraint.

  Constraints
can be
named.

  Constraints
can use
other tables

⇒  Must check
if other table
modified

 CREATE TABLE FroshSemEnroll
 (sid CHAR(10),
 sem_title CHAR(40),

 PRIMARY KEY (sid, sem_title),
 FOREIGN KEY (sid) REFERENCES Students
 CONSTRAINT froshonly
 CHECK (2015 =
 (SELECT S.classyear
 FROM Students S
 WHERE S.sid=sid)))

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 34

Constraints Over Multiple Relations

  Cannot impose as CHECK on each table. If either table
is empty, the CHECK is satisfied

  Is conceptually wrong to associate with individual
tables

  ASSERTION is the right solution; not associated with
either table.

Number of bank branches in a city is less than 3 or the
population of the city is greater than 100,000

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 35

Number of bank branches in a city is less than 3 or
the population of the city is greater than 100,000

CREATE ASSERTION branchLimit
CHECK
(NOT EXISTS ((SELECT C.name, C.state
 FROM Cities C
 WHERE C.pop <=100000)
 INTERSECT

 (SELECT D.name, D.state
 FROM Cities D
 WHERE 3 <=

 (SELECT COUNT (*)
 FROM Branches B

 WHERE B.bcity=D.name))))

Based on slides for Database Management Systems by R. Ramakrishnan and J. Gehrke 36

Summary

  SQL an important factor in the early acceptance of the
relational model
•  more natural than earlier, procedural query languages.

  Significantly more expressive power than fundamental
relational model
•  Blend of relational algebra and calculus - plus extensions
•  Relational queries often expressed more naturally in SQL

  Many alternative ways to write a query
•  optimizer should look for most efficient evaluation plan
•  when efficiency counts, users need to be aware of how queries are

optimized and evaluated for best results

  SQL allows specification of rich integrity constraints

