
1

1

COS 425:
Database and Information

Management Systems

Crash Recovery

2

Crash Recovery Overview

•  Goals of crash recovery
– Either transaction commits and is correct or

aborts
– Commit means all actions of transaction have

been executed
•  Error model:

–  lose contents main memory
–  disk contents intact and correct

3

Crash recovery requirements
•  If transaction has committed then still

have results (on disk)
•  If transaction in process, either

1.  Transaction completely aborts
OR
2.  Transaction can continue after restore as if

no crash
•  Get serializable schedule such that

transactions that committed before crash
still commit and in same order

=> NEED LOG 4

ARIES algorithm

•  Assumptions
–  Strict 2PL => no cascaded aborts
–  “in place” disk updates: data overwritten on disk

•  Page read into buffer, changed in buffer, written out again
•  Write of page to disk is atomic

•  Log:
–  Sequential writes on separate disk
–  Write differences only

•  Multiple updates on single log page
•  Each log record has unique Log Sequence Number

–  LSN strictly sequential

Contents of a log record

•  prevLSN for transaction
–  creates linked list of LSNs for transaction going back in

time
•  transaction ID
•  Type

–  update, commit, abort, end, CLR (compensation log record)

•  Update information
–  page ID
–  length & offset
–  before data & after data

5

Bookkeeping: tables
•  Transaction table

–  transaction ID
–  status: running, committed, aborted
–  lastLSN

•  points to most recent prevLSN
•  start of chain

•  Dirty page table
–  ID of each page with changes not yet on disk
–  recLSN for each page:

LSN of log record for earliest page change not on disk

These tables in main memory 6

2

Other bookkeeping

•  pageLSN for each data page
–  is LSN of most recent log record for update to that

page
–  is stored on data page

•  flushedLSN
–  maximum LSN already written to disk
–  is stored in memory

•  Requirement: write data page to disk only after
write log entries to disk
–  pageLSN <= flushedLSN on data page write 7

Checkpoint
•  Properties

–  Goes on while other transactions running
•  as separate transaction

–  does not flush dirty pages to disk
–  does tell us how much to fix on crash

•  Actions
1. Write “begin checkpoint” to log
2. Write current transaction table and dirty page table

and “end” as one record to log
•  tables as of “begin checkpoint”

3. Write log to disk
4. Store LSN of “begin checkpoint” in safe place

•  “master record” 8

Commit

Actions
1.  write “commit” to log
2.  write to disk all log records up to commit

record
3.  clean up transaction table,etc.
4.  write “end(commit)” record to log

•  commit is executed as soon as disk write finishes
•  if crash before table clean-up, transaction will

commit on recovery
9 10

Update

Actions
1.  Pin data page in buffer and write change
2.  Write log entry (LSN=#)
3.  Update transaction table (lastLSN = #)
4.  Update dirty page table
5.  Write pageLSN= # to page and unpin page

11

Transactions do concurrently (mixed)

•  Commit
•  Abort (those not part of restart after crash)
•  Checkpoint
•  Update

Crash recovery manager does alone:

All actions during restore of database during
restart after crash

12

When write to disk
•  Write log pages from buffer:

– on checkpoint
– on commit of transaction
– When want to write data page but

pageLSN > flushedLSN

•  Write data pages from buffer:
– At discretion of buffer manager

•  Writing fewer log pages and sequentially:
 cheaper

3

13

Crash recovery Phase I: Analysis

•  Get log from disk
•  Get most recently checkpointed transaction table

and dirty page table
–  use master record

•  Read log forward from checkpoint and update
tables
–  For END log entries, remove transaction from

transaction table
–  For other log entries, add or update transaction table

entry

14

Crash recovery Phase II: Redo
•  REDO all actions in log starting at earliest

point when a change not on disk
– Want earliest recLSN of all recLSNs in dirty

pg table
–  Includes redo of UNDOs and ABORTs

•  See Phase III

•  When redo action
– Write new pageLSN
– Do NOT write new Log entry

15

At end phase II Redo

•  DB now in state was as recorded by log on
disk at crash

•  To finish phase II
– write END log records for transactions in

transaction table that were committed
– Remove committed transactions from

transaction table

16

Crash recovery Phase III: Undo
•  UNDO actions of all transactions not

committed by the end of phase II
•  Work backwards through log

– Follow pointer chain from each still-active
transaction
lastLSN →prevLSN →prevLSN → … → prevLSN

– To process, interleave chains in LSN order
from all active transactions
•  Event queue

17

Phase III UNDO Actions
•  For UPDATE

1.  Write CLR record to log *NEW*
•  Records change done to undo UPDATE
•  Records undoNextLSN storing prevLSN of this UPDATE

–  Records next record to undo
•  Think of as ABORT log record like UPDATE log record

2.  Undo change in UPDATE
3.  If prevLSN for UPDATE == NULL, write END record

for transaction
 Else queue prevLSN for processing

UNDO makes new DB changes =>
Need step 1 to deal with another crash as undoing

18

Phase III UNDO Actions
•  For CLR

If undoNextLSN == NULL, write END record for
transaction
•  Undo/abort of transaction done

 Else queue undoNextLSN for processing
•  Re-establishes prevLSN chain for undoing/

aborting transaction

-  If are undoing a CLR, were in the process of undoing/
aborting a transaction when crashed

-  The redo of the CLR in phase II did the actual undoing
-  Don’t undo the UNDO represented by CLR record!

4

19

Effects of recovery

•  REDO does “clean-up”
– ends committed transactions
– Writes ENDs to log

•  UNDO does new work to undo/abort
– Changes data pages, which may be on disk
– Writes log entries for its actions

20

Short Example UNDO phase
•  T1 and T2 to undo
•  Assume neither an

ABORT

Queued to undo:
LSN 7
LSN 5

LOG
Start

1
2
3
4
5
6
7
8
9

lastLSN(T1)

lastLSN(T2)

prevLSN(7)

21

Short Example UNDO phase
1)  Write “CLR LSN7 of

T1” to log with
undoNextLSN = 3

2)  Undo action of T1 in
LSN 7

3)  Queue prevLSN(7) to
undo

Queued to undo:
LSN 5
LSN 3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10 CLR LSN7 of T1

lastLSN(T1)

lastLSN(T2)

prevLSN(7)

LOG
Start

undoNextLSN(10)

22

Short Example UNDO phase
1)  Write “CLR LSN5 of

T2” to log with
undoNextLSN = null

2)  Undo action of T2 in
LSN 5

CRASH

Queued to undo:
LSN 3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10 CLR LSN7 of T1
11 CLR LSN5 of T2

lastLSN(T1)
lastLSN(T2)

prevLSN(7)

LOG
Start

undoNextLSN(10)

23

Short Example UNDO phase

CRASH

Assume log through entry 11 was written to disk

Look at new UNDO phase

24

Short Example UNDO phase

 1
 2
 3
 4
 5
 6
 7
 8
 9
10 CLR LSN7 of T1
11 CLR LSN5 of T2

lastLSN(T1)
lastLSN(T2)

prevLSN(7)

LOG
Start

undoNextLSN(10)

•  T1 and T2 to undo

Queued to undo:
LSN 11
LSN 10

5

25

Short Example UNDO phase
1)  Write “END T2

ABORT” to log

Queued to undo:
LSN 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10 CLR LSN7 of T1
11 CLR LSN5 of T2
12  END T2 ABORT

lastLSN(T1)

prevLSN(7)

LOG
Start

undoNextLSN(10)

26

Short Example UNDO phase
1)  Queue undoNext(10)

to undo

Queued to undo:
LSN 3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10 CLR LSN7 of T1
11  CLR LSN5 of T2
12  END T2 ABORT

lastLSN(T1)

prevLSN(7)

LOG
Start

undoNextLSN(10)

27

Short Example UNDO phase

 1
 2
 3
 4
 5
 6
 7
 8
 9
10 CLR LSN7 of T1
11  CLR LSN5 of T2
12  END T2 ABORT
13  CLR LSN3 of T1
14  END T1 ABORT

prevLSN(7)

LOG
Start

undoNextLSN(10)

1)  Write “CLR LSN3 of
T1” to log with
undoNextLSN = null

2)  Undo action of T1 in
LSN 3

3)  Write “END T1
ABORT” to log

 Queue Empty

28

Abort as part of a transaction

•  Write ABORT log record
–  Analogous to COMMIT but more to do before END

•  Execute UNDO phase for
lastLSN →prevLSN →prevLSN → … → prevLSN

of the aborting transaction
•  When UNDO phase writes END to log, is

end of ABORT of transaction
–  Must remove from transaction table

