Eliminating Receive Livelock in an Interrupt-Driven
Kernel

JEFFREY C. MOGUL

Digital Equipment Corporation Western Research Laboratory
and

K. K. RAMAKRISHNAN

AT&T Labs — Research

Most operating systems use interface interrupts to schedule network tasks. Interrupt-driven sys-
tems can provide low overhead and good latency at low offered load, but degrade significantly at
higher arrival rates unless care is taken to prevent several pathologies. These are various forms
of receive livelock, in which the system spends all of its time processing interrupts, to the ex-
clusion of other necessary tasks. Under extreme conditions, no packets are delivered to the user
application or the output of the system. To avoid livelock and related problems, an operating
system must schedule network interrupt handling as carefully as it schedules process execution.
We modified an interrupt-driven networking implementation to do so; this modification eliminates
receive livelock without degrading other aspects of system performance. Our modifications include
the use of polling when the system is heavily loaded, while retaining the use of interrupts under
lighter load. We present measurements demonstrating the success of our approach.

Categories and Subject Descriptors: C.2 [Computer Systems Organization]: Computer-
Communication Networks; D.4 [Software|: Operating Systems; D.4.1 [Operating Systems]:
Process Management scheduling; D.4.4 [Operating Systems|: Communications Management
input/output; network communication

General Terms: Performance

Additional Key Words and Phrases: Interrupt-driven kernel, livelock, polling, scheduling

1. INTRODUCTION

Most operating systems use interrupts to internally schedule the performance of
tasks related to I/O events, and particularly the invocation of network protocol
software. Interrupts are useful because they allow the CPU to spend most of its
time doing useful processing, yet respond quickly to events without constantly
having to poll for event arrivals. Polling is expensive, especially when I/0 events

Author’s addresses: J. C. Mogul, Digital Equipment Corporation Western Research Labor-
atory, 250 University Avenue, Palo Alto, CA 94301; email: mogul@wrl.dec.com; K. K. Ra-
makrishnan: AT&T Labs Research 180 Park Avenue, Florham Park, NJ 07932; email:
kkrama@research.att.com.

Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

© 1997 ACM 0734-2071/97/0800-0217 $03.50

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997, Pages 217 252.

218 : J. C. Mogul and K. K. Ramakrishnan

are relatively rare, as is the case with disks, which seldom interrupt more than a few
hundred times per second. Polling can also increase the latency of response to an
event. Modern systems can respond to an interrupt in a few tens of microseconds;
to achieve the same latency using polling, the system would have to poll tens
of thousands of times per second, which would create excessive overhead. For a
general-purpose system, an interrupt-driven design works best.

Most extant operating systems were designed to handle I/O devices that inter-
rupt every few milliseconds. Disks tended to issue events on the order of once
per revolution; first-generation LAN environments tend to generate a few hundred
packets per second for any single end-system. Although people understood the need
to reduce the cost of taking an interrupt, in general this cost was low enough that
any normal system would spend only a fraction of its CPU time handling interrupts.

The world has changed. Operating systems typically use the same interrupt
mechanisms to control both network processing and traditional I/O devices, yet
many new applications can generate packets several orders of magnitude more often
than a disk can generate seeks. Multimedia and other real-time applications will
become widespread. Client-server applications, such as NFS, running on fast clients
and servers can generate heavy RPC loads. Multicast and broadcast protocols
subject innocent-bystander hosts to loads that do not interest them at all. As
a result, network implementations must now deal with significantly higher event
rates.

Many multimedia and client-server applications share another unpleasant prop-
erty: unlike traditional network applications (Telnet, FTP, electronic mail), they
are not flow-controlled. Some multimedia applications want constant-rate, low-
latency service. RPC-based client-server applications often use datagram-style
transports, instead of reliable, flow-controlled protocols. For example, the most
common UNIX NFS client implementation can generate numerous RPC requests
in parallel from one client host. And even when a particular instance of an applica-
tion is flow-controlled, when the number of potential clients is large or unbounded
(e.g., an Internet Web server), the system under load has no way to defer requests
from new clients. Note that whereas I/O devices such as disks generate interrupts
only as a result of requests from the operating system, and so are inherently flow-
controlled, network interfaces generate unsolicited receive interrupts.

The shift to higher event rates and non-flow-controlled protocols can subject
a host to congestive collapse: once the event rate saturates the system, without a
negative feedback loop to control the sources, there is no way to gracefully shed load.
If the host runs at full throughput under these conditions, and gives fair service
to all sources, this at least preserves the possibility of stability. But if throughput
decreases as the offered load increases, the overall system becomes unstable.

In short, temporary overload conditions are a fact of life for many kinds of sys-
tems. It may be infeasible to configure such systems to accommodate the peak
potential load, yet we certainly would prefer that they respond gracefully to peaks:
shedding or deferring load, rather than collapsing.

Interrupt-driven systems tend to perform badly under overload. Tasks performed
at interrupt level, by definition, have absolute priority over all other tasks. If the
event rate is high enough to cause the system to spend all of its time responding
to interrupts, then nothing else will happen, and the system throughput will drop

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 219

to zero. We call this condition receive livelock: the system is not deadlocked,
but it makes no progress on any of its tasks. Any purely interrupt-driven system
using fixed interrupt priorities will suffer from receive livelock under input overload
conditions. Once the input rate exceeds the reciprocal of the CPU cost of processing
one input event, any task scheduled at a lower priority will not get a chance to run.

Yet we do not want to lightly discard the obvious benefits of an interrupt-driven
design. Instead, we should integrate control of the network interrupt handling
subsystem into the operating system’s scheduling mechanisms and policies. In this
article, we present a number of simple modifications to the purely interrupt-driven
model. We start with a hybrid design in which the system polls only when triggered
by an interrupt, and interrupts happen only when polling is suspended; this provides
low latency under low loads, and high throughput under high loads. We augment
the design with simple feedback control, so that when the system is overloaded
and must drop packets, it drops the ones in which it has the least investment. We
also create a simple connection between the traditional scheduling system and the
network subsystem, in order to guarantee some CPU time to user tasks even during
periods of overload.

Later in the article, we describe the results of benchmarks demonstrating that
our modifications do indeed guarantee throughput and fairness under overload,
while also improving peak throughput and latency, and still preserving the desirable
qualities of an interrupt-driven system under light load.

2. MOTIVATING APPLICATIONS

We were led to our investigations by a number of specific applications that can
suffer from livelock. Such applications could be built on dedicated single-purpose
systems, but are often built using a general-purpose system such as UNIX, and we
wanted to find a general solution to the livelock problem. The applications include:

—Host-based routing: Although internetwork routing is traditionally done using
special-purpose (usually non-interrupt-driven) router systems, routing is often
done using more conventional hosts. Virtually all Internet “firewall” products
use UNIX or Windows NT systems for routing [Mogul 1989; Ranum and Avolio
1994]. Much experimentation with new routing algorithms is done on UNIX
[Ferrari et al. 1991], especially for IP multicasting.

—Passive network monitoring: Network managers, developers, and researchers
commonly use UNIX systems, with their network interfaces in “promiscuous
mode,” to monitor traffic on a LAN for debugging or statistics gathering [Mogul
1990].

Network file service: Servers for protocols such as NFS are commonly built from
UNIX systems.

These applications (and others like them, such as Web servers) are all potentially
exposed to heavy, non-flow-controlled loads.

This problem is not simply of theoretical interest. We have encountered livelock
in all three of these applications, either in real-life use, or when measuring system
performance using standard benchmarking techniques. The potential for livelock is
also a security problem, since it leaves a system open to a simple denial-of-service
attack. For all three of these applications, our techniques have solved or mitigated

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

220 : J. C. Mogul and K. K. Ramakrishnan

the problem, and we have shipped the solutions to customers. For example, an
earlier implementation of this work was successfully deployed in the routers used
for the NASDAQ financial network.

The rest of this article concentrates on host-based routing and (to a lesser extent)
network monitoring, since this simplifies the context of the problem and allows easy
performance measurement.

3. REQUIREMENTS FOR SCHEDULING NETWORK TASKS

Performance problems generally arise when a system is subjected to transient or
long-term input overload. Ideally, the communication subsystem could handle the
worst-case input load without saturating, but cost considerations often prevent
us from building such powerful systems. Systems are usually sized to support a
specified design-center load, and under overload the best we can ask for is controlled
and graceful degradation.

When an end-system is involved in processing considerable network traffic, its
performance depends critically on how its tasks are scheduled. The mechanisms and
policies that schedule packet processing and other tasks should guarantee acceptable
system throughput, reasonable latency and jitter (variance in delay), fair allocation
of resources, and overall system stability, without imposing excessive overheads,
especially when the system is overloaded.

3.1 Throughput

We can define throughput as the rate at which the system delivers packets to their
ultimate consumers. A consumer could be an application running on the receiving
host, or the host could be acting as a router and forwarding packets to consumers
on other hosts. We expect the throughput of a well-designed system to keep up
with the offered load up to a point called the Mazimum Loss Free Receive Rate
(MLFRR; a similar term was first used by Ramakrishnan [1992]), and at higher
loads throughput should not drop below this rate.

Of course, useful throughput depends not just on successful reception of pack-
ets; the system must also transmit packets. Because packet reception and packet
transmission often compete for the same resources, under input overload condi-
tions the scheduling subsystem must ensure that packet transmission continues at
an adequate rate.

3.2 Latency and lJitter

Many applications, such as distributed systems and interactive multimedia, often
depend more on low-latency, low-jitter communications than on high throughput.
Even during overload, we want to avoid long queues, which increases latency, and
bursty scheduling, which increases jitter.

3.3 Fair Allocation of Resources

When a host is overloaded with incoming network packets, it must also continue to
process other tasks, so as to keep the system responsive to management and control
requests, and to allow applications to make use of the arriving packets. The schedul-
ing subsystem must fairly allocate CPU resources among packet reception, packet

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 221

transmission, protocol processing, other I/O processing, system housekeeping, and
application processing.

3.4 Overall Stability

A host that behaves badly when overloaded can also harm other systems on the
network. Livelock in a router, for example, may cause the loss of control messages,
or delay their processing. This can lead other routers to incorrectly infer link
failure, causing incorrect routing information to propagate over the entire wide-area
network. Worse, loss or delay of control messages can lead to network instability,
by causing positive feedback in the generation of control traffic [Perlman 1983].

3.5 Summary of Requirements

The scheduling of network activity should guarantee:

—High throughput for both input and output, and no loss of throughput during
overload conditions.
—Low latency and low jitter, even during overload.

Fair allocation of CPU and memory resources, both among networking tasks,
and to non-networking tasks as well.

The approach described in this article meets these requirements.

4. INTERRUPT-DRIVEN SCHEDULING AND ITS CONSEQUENCES

Scheduling policies and mechanisms significantly affect the throughput and latency
of a system under overload. In an interrupt-driven operating system, the interrupt
subsystem must be viewed as a component of the scheduling system, since it has a
major role in determining what code runs when. We have observed that interrupt-
driven systems have trouble meeting the requirements discussed in Section 3.

In this section, we first describe the characteristics of an interrupt-driven system,
and then identify three kinds of problems caused by network input overload in
interrupt-driven systems:

Receive livelocks under overload: delivered throughput drops to zero while the
input overload persists.

—Increased latency for packet delivery or forwarding: the system delays the delivery
of one packet while it processes the interrupts for subsequent packets, possibly
of a burst.

Starvation of packet transmission: even if the CPU keeps up with the input load,
strict priority assignments may prevent it from transmitting any packets.

4.1 Description of an Interrupt-Driven System

An interrupt-driven system performs badly under network input overload because
of the way in which it prioritizes the tasks executed as the result of network input.
We begin by describing a typical operating system’s structure for processing and
prioritizing network tasks. We use the 4.2BSD [Leffler et al. 1989] model for our ex-
ample, but we have observed that other operating systems, such as VMS, MS-DOS,
and Windows N'T, and even several Ethernet chips, have similar characteristics and
hence similar problems.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

222 : J. C. Mogul and K. K. Ramakrishnan

When a packet arrives, the network interface signals this event by interrupting
the CPU. Device interrupts normally have a fixed Interrupt Priority Level (IPL),
and preempt all tasks running at a lower IPL; interrupts do not preempt tasks
running at the same IPL. The interrupt causes entry into the associated network
device driver, which does some initial processing of the packet. In 4.2BSD, only
buffer management and data-link layer processing happens at “device IPL.” The
device driver then places the packet on a queue, and generates a software interrupt
to cause further processing of the packet. The software interrupt is taken at a lower
IPL, and so this protocol processing can be preempted by subsequent interrupts.
(The system design avoids lengthy periods at high IPL, in order to reduce latency
for handling certain other events, such as lower-priority device interrupts.)

The queues between steps executed at different IPLs provide some insulation
against packet losses due to transient overloads, but typically they have fixed length
limits. When a packet should be queued but the queue is full, the system must
drop the packet. The selection of proper queue limits, and thus the allocation of
buffering among layers in the system, is critical to good performance, but beyond
the scope of this article.

Note that the operating system’s scheduler does not participate in any of this
activity, and in fact is entirely ignorant of it.

As a consequence of this structure, a heavy load of incoming packets could gen-
erate a high rate of interrupts at device IPL. Dispatching an interrupt is a costly
operation, so to avoid this overhead, the network device driver attempts to batch
interrupts. That is, if packets arrive in a burst, the interrupt handler attempts
to process as many packets as possible before returning from the interrupt. This
amortizes the cost of processing an interrupt over several packets.

Even with batching, a system overloaded with input packets will spend most of
its time in the code that runs at device IPL. That is, the design gives absolute
priority to processing incoming packets. At the time that 4.2BSD was developed,
in the early 1980s, the rationale for this was that network adapters had little buffer
memory, and so if the system failed to move a received packet promptly into main
memory, a subsequent packet might be lost. (This is still a problem with low-cost
interfaces.) Thus, systems derived from 4.2BSD do minimal processing at device
IPL, and give this processing priority over all other network tasks.

Modern network adapters can receive many back-to-back packets without host
intervention, either through the use of copious buffering or highly autonomous DMA
engines. This insulates the system from the network, and eliminates much of the
rationale for giving absolute priority to the first few steps of processing a received
packet.

4.2 Receive Livelock

In an interrupt-driven system, receiver interrupts take priority over all other activ-
ity. If packets arrive too fast, the system will spend all of its time processing receiver
interrupts. It will therefore have no resources left to support delivery of the arriving
packets to applications (or, in the case of a router, to forwarding and transmitting
these packets). The useful throughput of the system will drop to zero.

Following Ramakrishnan [1992], we refer to this condition as receive livelock: a

state of the system where no useful progress is being made, because some necessary

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 223

resource is entirely consumed with processing receiver interrupts. When the input
load drops sufficiently, the system leaves this state, and is again able to make
forward progress. This is not a deadlock state, from which the system would not
recover even when the input rate drops to zero.

A system could behave in one of three ways as the input load increases. In
an ideal system, the delivered throughput always matches the offered load. In a
realizable system, the delivered throughput keeps up with the offered load up to
the Mazimum Loss Free Receive Rate (MLFRR), and then is relatively constant
after that. At loads above the MLFRR, the system is still making progress, but
it is dropping some of the offered input; typically, packets are dropped at a queue
between processing steps that occur at different priorities.

In a system prone to receive livelock, however, throughput decreases with in-
creasing offered load, for input rates above the MLFRR. Receive livelock occurs at
the point where the throughput falls to zero. A livelocked system wastes all of the
effort it puts into partially processing received packets, since they are all discarded.

Receiver-interrupt batching complicates the situation slightly. By improving sys-
tem efficiency under heavy load, batching can increase the MLFRR. Batching can
shift the livelock point but cannot, by itself, prevent livelock.

In Section 6.2, we present measurements showing how livelock occurs in a prac-
tical situation. Additional measurements, and a more detailed discussion of the
problem, are given in Ramakrishnan [1992].

4.3 Receive Latency under Overload

Although interrupt-driven designs are normally thought of as a way to reduce
latency, they can actually increase the latency of packet delivery. If a burst of
packets arrives too rapidly, the system will do link-level processing of the entire
burst before doing any higher-layer processing of the first packet, because link-level
processing is done at a higher priority. As a result, the first packet of the burst is
not delivered to the user until link-level processing has been completed for all the
packets in the burst. The latency to deliver the first packet in a burst is increased
almost by the time it takes to receive the entire burst. If the burst is made up of
several independent NFS RPC requests, for example, this means that the server’s
disk sits idle when it could be doing useful work.

To demonstrate this effect, we performed experiments using ULTRIX Version
3.0 running on a DECstation 3100 (approximately 11.3 SPECmarks). ULTRIX,
derived from 4.2BSD, closely follows the network design of that system. We used
a logic analyzer to measure the time between the generation of an interrupt by the
Ethernet device (an AMD 7990 LANCE chip), signalling the complete reception
of a packet, and the packet’s delivery to an application. We used the kernel’s
implementation of a simple data-link layer protocol, rather than IP/TCP or a
similar protocol stack, but the steps performed by the kernel are substantially the
same:

—Ilink-level processing at device IPL, which includes copying the packet into kernel
buffers (the interface does not support DMA)

—further processing following a software interrupt, which includes locating the
appropriate user process, and queuing the packet for delivery to this process

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

224 : J. C. Mogul and K. K. Ramakrishnan

51 usec 108 usec
—~— -
— N (32 <
o ko T T
x ¥4 ¥4 ¥4
é‘f § 5“? é Time
Copy pkt 1 Copy pkt 2 | Copy pkt 3| Copy pkt 4| Dispatch 1 cee Deliver 1
420 usec * 585 usec + 730 usec * 1.33 msec * 2.02 msec *

Fig. 1. How interrupt-driven scheduling causes excess latency under overload.

—finally, awakening the user process, which then (in kernel mode) copies the re-
ceived packet into its own buffer.

Figure 1 shows a time line for the completion of these processing stages, when
receiving a burst of four minimum-size packets from the Ethernet. The system
starts to copy the first packet into a kernel buffer almost immediately after it
arrives, but does not finish copying the third packet until about 1.33 msec. later.
Only after finishing this does it schedule a software interrupt to dispatch the packet
to the user process, and all of the packets are dispatched before the user process is
awakened. It is the use of preemptive interrupt priorities that prevents completion
of processing for the first packet until substantial processing has been done on the
entire burst.

We generated our bursts of Ethernet packets with an interpacket spacing of 108
psec. (this is not the minimum theoretical spacing, but we were limited by the
packet generator we used). The latency to deliver the first packet to the user
application depended on the size of a burst: 1.23 msec. for a single-packet burst,
1.54 msec. for a two-packet burst, 2.02 msec. for a four-packet burst, and 5.03
msec. for a 16-packet burst. A plot of first-packet delivery latency versus burst
size (not shown, for reasons of space) reveals that the latency is nearly linear in the
burst size, for a wide range of packet sizes.

We will present a more detailed analysis of receive latency in Section 8, in the
context of a somewhat different system.

4.4 Starvation of Transmits under Overload

In most systems, the packet transmission process consists of selecting packets from
an output queue, handing them to the interface, waiting until the interface has sent
the packet, and then releasing the associated buffer.

Packet transmission is often done at a lower priority than packet reception. This
policy is superficially sound, because it minimizes the probability of packet loss
when a burst of arriving packets exceeds the available buffer space. Reasonable
operation of higher-level protocols and applications, however, requires that transmit
processing makes sufficient progress.

When the system is overloaded for long periods, use of a fixed lower priority
for transmission leads to reduced throughput, or even complete cessation of packet

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 225

transmission. Packets may be awaiting transmission, but the transmitting interface
is idle. We call this transmit starvation.

Transmit starvation may occur if the transmitter interrupts at a lower priority
than the receiver; or if they interrupt at the same priority, but the receiver’s events
are processed first by the driver; or if transmission completions are detected by
polling, and the polling is done at a lower priority than receiver event processing.

This effect has also been described previously [Ramakrishnan 1993].

5. AVOIDING LIVELOCK THROUGH BETTER SCHEDULING

In this section, we discuss several techniques to avoid receive livelocks. The tech-
niques we discuss in this section include mechanisms to control the rate of incom-
ing interrupts, polling-based mechanisms to ensure fair allocation of resources, and
techniques to avoid unnecessary preemption.

5.1 Limiting the Interrupt Arrival Rate

We can avoid or defer receive livelock by limiting the rate at which interrupts are
imposed on the system. The system checks to see if interrupt processing is taking
more than its share of resources, and if so, disables interrupts temporarily.

The system may infer impending livelock because it is discarding packets due to
queue overflow, or because high-layer protocol processing or user-mode tasks are
making no progress, or by measuring the fraction of CPU cycles used for packet
processing. Once the system has invested enough work in an incoming packet to
the point where it is about to be queued, it makes more sense to process that packet
to completion than to drop it and rescue a subsequently arriving packet from being
dropped at the receiving interface, a cycle that could repeat ad infinitum.

When the system is about to drop a received packet because an internal queue
is full, this strongly suggests that it should disable input interrupts from that par-
ticular interface. (It is not necessary to disable all system interrupts.) The host
can then make progress on the packets already queued for higher-level processing,
which has the side-effect of freeing buffers to use for subsequent received packets.
Meanwhile, if the receiving interface has sufficient buffering of its own, additional
incoming packets may accumulate there for a while.

We also need a trigger for reenabling input interrupts, to prevent unnecessary
packet loss. Interrupts may be reenabled when internal buffer space becomes avail-
able, or upon expiration of a timer.

We may also want the system to guarantee some progress for user-level code. The
system can observe that, over some interval, it has spent too much time processing
packet input and output events, and temporarily disable interrupts to give higher
protocol layers and user processes time to run. On a processor with a fine-grained
clock register, the packet-input code can record the clock value on entry, subtract
that from the clock value seen on exit, and keep a sum of the deltas. If this sum (or
a running average) exceeds a specified fraction of the total elapsed time, the kernel
disables input interrupts. (Digital’s GIGAswitch system uses a similar mechanism
[Souza et al. 1994].)

On a system without a fine-grained clock, one can crudely simulate this approach
by sampling the CPU state on every clock interrupt (clock interrupts typically
preempt device interrupt processing). If the system finds itself in the midst of

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

226 : J. C. Mogul and K. K. Ramakrishnan

processing interrupts for a series of such samples, it can disable interrupts for a few
clock ticks.

5.2 Use of Polling

Limiting the interrupt rate prevents system saturation but might not guarantee pro-
gress; the system must also fairly allocate packet-handling resources between input
and output processing, and between multiple interfaces. We can provide fairness
by carefully polling all sources of packet events, using a round-robin schedule.

In a pure polling system, the scheduler would invoke the device driver to “listen”
for incoming packets and for transmit completion events. This would control the
amount of device-level processing, and could also fairly allocate resources among
event sources, thus avoiding livelock. Simply polling at fixed intervals, however,
adds unacceptable latency to packet reception and transmission.

Polling designs and interrupt-driven designs differ in their placement of policy
decisions. When the behavior of tasks cannot be predicted, we rely on the scheduler
and the interrupt system to dynamically allocate CPU resources. When tasks can
be expected to behave in a predictable manner, the tasks themselves are better able
to make the scheduling decisions, and polling depends on voluntary cooperation
among the tasks.

Since a purely interrupt-driven system leads to livelock, and a purely polling
system adds unnecessary latency, we employ a hybrid design, in which the system
polls only when triggered by an interrupt, and interrupts happen only while polling
is suspended. During low loads, packet arrivals are unpredictable, and we use
interrupts to avoid latency. During high loads, we know that packets are arriving
at or near the system’s saturation rate, so we use polling to ensure progress and
fairness, and only reenable interrupts when no more work is pending.

5.3 Avoiding Preemption

As we showed in Section 4.2, receive livelock occurs because interrupt processing
preempts all other packet processing. We can solve this problem by making higher-
level packet processing nonpreemptable. We observe that this can be done following
one of two general approaches: do (almost) everything at high IPL, or do (almost)
nothing at high IPL.

Following the first approach, one could modify the 4.2BSD design (see Section
4.1) by eliminating the software interrupt, polling interfaces for events, and pro-
cessing received packets to completion at device IPL. Because higher-level pro-
cessing occurs at device IPL, it cannot be preempted by another packet arrival,
and so we guarantee that livelock does not occur within the kernel’s protocol stack.
One would still need to use a rate-control mechanism to ensure progress by user-
level applications.

We used this first approach in an earlier prototype, where it did provide a suf-
ficient solution to the livelock problem, but using IPL to prevent preemption has
several drawbacks. For example, it can interfere with assumptions made elsewhere
in the kernel about the IPL.

In a system following the second approach, which we followed for the work de-
scribed in this article, the interrupt handler runs only long enough to set a “service
needed” flag, and to schedule the polling thread if it is not already running. The

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 227

polling thread runs at zero IPL, checking the flags to decide which devices need
service. Only when the polling thread is done does it reenable the device inter-
rupt. The polling thread can be interrupted at most once by each device, and
so it progresses at full speed without interference. Note that this does not re-
quire fully nonpreemptable threads; we prevent livelock caused by interrupt-driven
preemption by disabling the generation of interrupts, not by making the thread
nonpreemptable.

Either approach eliminates the need to queue packets between the device driver
and the higher-level protocol software, although if the protocol stack must block,
the incoming packet must be queued at a later point. (For example, this would
happen when the data segment is ready for delivery to a user process, or when an
IP fragment is received and its companion fragments are not yet available.)

5.4 Summary of Techniques

In summary, we avoid livelock by:

—Using interrupts only to initiate polling.
Using round-robin polling to fairly allocate resources among event sources.
Temporarily disabling input when feedback from a full queue, or a limit on CPU
usage, indicates that other important tasks are pending.

—Dropping packets early, rather than late, to avoid wasted work. Once we decide
to receive a packet, we try to process it to completion.

We maintain high performance by

Reenabling interrupts when no work is pending, to avoid polling overhead and
to keep latency low.

—Letting the receiving interface buffer bursts, to avoid dropping packets.
—Eliminating the IP input queue, and associated overhead.

We observe, in passing, that inefficient code tends to exacerbate receive livelock,
by lowering the MLFRR of the system and hence increasing the likelihood that
livelock will occur. Aggressive optimization, “fast-path” designs, and removal of
unnecessary steps all help to postpone arrival of livelock.

6. LIVELOCK IN BSD-BASED ROUTERS

In this section, we consider the specific example of an IP packet router built using
Digital UNIX (formerly DEC OSF/1). We chose this application because routing
performance is easily measured. Also, since firewalls typically use UNIX-based
routers, they must be livelock-proof in order to prevent denial-of-service attacks.

Our goals were to (1) obtain the highest possible maximum throughput; (2)
maintain high throughput even when overloaded; (3) allocate sufficient CPU cycles
to user-mode tasks; (4) minimize latency; and (5) avoid degrading performance in
other applications.

6.1 Measurement Methodology

Our test configuration consisted of a router-under-test connecting two otherwise
unloaded Ethernets. A source host generated IP /UDP packets at a variety of rates,

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

228 : J. C. Mogul and K. K. Ramakrishnan

5000
| T o |
— °
@ o
g 4000 —) .. . —
X o [)
! o ,
g 3000 o° ’o. Without screend |
g [} ['
§ 2000 — oo * o —
(X O ®
‘g_ O O With screend L]
g 1000 g O —
(@] O
0 | | O B O0gm o |
0 2000 4000 6000 8000 10000 12000
Input packet rate (pkts/sec)

Fig. 2. Forwarding performance of unmodified kernel.

and sent them via the router to a destination address. (The destination host did
not exist; we fooled the router by inserting a phantom entry into its ARP table.)
We measured router performance by counting the number of packets successfully
forwarded in a given period, yielding an average forwarding rate.

The router-under-test was a DECstation 3000/300 Alpha-based system running
Digital UNIX V3.2, with a SPECint92 rating of 66.2. We chose the slowest available
Alpha host, to make the livelock problem more evident. The source host was a
DECstation 3000/400, with a SPECint92 rating of 74.7. We slightly modified its
kernel to allow more efficient generation of output packets, so that we could stress
the router-under-test as much as possible.

In all the trials reported on here, the packet generator sent 10,000 UDP packets
carrying four bytes of data. This system does not generate a precisely paced stream
of packets; the packet rates reported are averaged over several seconds, and the
short-term rates varied somewhat from the mean. We calculated the delivered
packet rate by using the “netstat” program (on the router machine) to sample the
output interface count (“Opkts”) before and after each trial. We checked, using a
network analyzer on the stub Ethernet, that this count exactly reports the number
of packets transmitted on the output interface.

6.2 Measurements of an Unmodified Kernel

We started by measuring the performance of the unmodified operating system,
as shown in Figure 2. Each mark represents one trial. The filled circles show
kernel-based forwarding performance, and the open squares show performance using
the screend program [Mogul 1989], used in some firewalls to screen out unwanted
packets. This user-mode program does one system call per packet; the packet-
forwarding path includes both kernel and user-mode code. In this case, screend
was configured to accept all packets.

From these tests, it was clear that with screend running, the router suffered from
poor overload behavior at rates above 2000 packets/sec., and complete livelock set
in at about 6000 packets/sec. Even without screend, the router peaked at 4700
packets/sec., and would probably livelock somewhat below the maximum Ethernet
packet rate of about 14,880 packets/second.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 229

Receive
interrupt
handler

Transmit
interrupt
ini handler
ipintrg output

ifqueue

IP
forwarding
layer

Increasing interrupt priority level

Fig. 3. IP forwarding path in 4.2BSD.

6.3 Why Livelock Occurs in the 4.2BSD Model

4.2BSD follows the model described in Section 4.1, and depicted in Figure 3. The
device driver runs at interrupt priority level (IPL) = SPLIMP, and the IP layer
runs via a software interrupt at IPL = SPLNET, which is lower than SPLIMP.
The queue between the driver and the IP code is named “ipintrq,” and each output
interface is buffered by a queue of its own. All queues have length limits; excess
packets are dropped. Device drivers in this system implement interrupt batching,
so at high input rates very few interrupts are actually taken.

Digital UNIX follows a similar model, with the IP layer running as a separately
scheduled thread at IPL = 0, instead of as a software interrupt handler.

It is now quite obvious why the system suffers from receive livelock. Once the
input rate exceeds the rate at which the device driver can pull new packets out of
the interface and add them to the IP input queue, the IP code never runs. Thus, it
never removes packets from its queue (ipintrq), which fills up, and all subsequent
received packets are dropped.

The system’s CPU resources are saturated because it discards each packet after
a lot of CPU time has been invested in it at elevated IPL. This is foolish; once
a packet has made its way through the device driver, it represents an investment
and should be processed to completion if at all possible. In a router, this means
that the packet should be transmitted on the output interface. When the system
is overloaded, it should discard packets as early as possible (i.e., in the receiving
interface), so that discarded packets do not waste any resources.

6.4 Fixing the Livelock Problem

We solved the livelock problem by doing as much work as possible in a kernel thread,
rather than in the interrupt handler, and by eliminating the IP input queue and
its associated queue manipulations and software interrupt (or thread dispatch).!

IThis is not such a radical idea; Van Jacobson had already used it as a way to improve end-system
TCP performance [Jacobson 1990].

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

230 : J. C. Mogul and K. K. Ramakrishnan

Unmodified
transmit
interrupt

Modified
transmit
interrupt
handler

Modified
receive

interrupt
handler

Unmodified
receive

interrupt
handler

handler

— Il

processing

(polled) (polied)

layer

©

>

<@

B ipintrg

s —

‘a —

=] —_— output

8 E— ifqueues

E T

=] Received [— .
£ packet P Transmit
(7] . packet
i processing forwarding

5}

=]

Fig. 4. Modified IP forwarding path, with polled functions.

Once we decide to take a packet from the receiving interface, we try not to discard
it later on, since this would represent wasted effort.

We also try to carefully “schedule” the work done in this thread. It is probably
not possible to use the system’s real scheduler to control the handling of each
packet, so we instead had this thread use a polling technique to efficiently simulate
round-robin scheduling of packet processing. The polling thread uses additional
heuristics to help meet our performance goals (see Section 6.6).

In the new system, the interrupt handler for an interface driver does almost no
work at all. Instead, it simply schedules the polling thread (if it has not already
been scheduled), recording its need for packet processing, and then returns from
the interrupt. It does not set the device’s interrupt-enable flag, so the system will
not be distracted with additional interrupts until the polling thread has processed
all of the pending packets. The interrupt-enable flag will be set later, once there is
no further work pending for this interface.

At boot time, the modified interface drivers register themselves with the polling
system, providing callback procedures for handling received and transmitted pack-
ets, and for enabling interrupts. When the polling thread is scheduled, it checks all
of the registered devices to see if they have requested processing, and invokes the
appropriate callback procedures to do what the interrupt handler would have done
in the unmodified kernel.

The received-packet callback procedures call the IP input processing routine dir-
ectly, rather than placing received packets on a queue for later processing; this
means that any packet accepted from the interface is processed as far as possible
(e.g., to the output interface queue for forwarding, or to a queue for delivery to a
process). If the system falls behind, the interface’s input buffer will soak up pack-
ets for a while, and any excess packets will be dropped by the interface before the
system has wasted any resources on it.

Figure 4 depicts the processing flow, for forwarded packets, in the modified ker-
nel (compare it to the unmodified kernel, depicted in Figure 3.) The original,
purely interrupt-driven mechanism is still available for unmodified network inter-
face drivers (shown in gray), but modified drivers use the polling mechanism. Here,

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 231

6000 | | | | |
B s000- @M pOOOpOg Bopo o |
E Polling (no quota) o e
S 4000 (= Polling (quota = 5) (j o] g -
% O No palling = % oo A o ° .‘
g 3000 r® Unmodified & OOO —
g) Co®
8 20001 . " 8eo o -
§ (S O 9
8 1000 — —

0 | | | : |
0 2000 4000 6000 8000 10000 12000
Input packet rate (pkts/sec)

Fig. 5. Forwarding performance of modified kernel, without using screend.

the “modified receive interrupt handler” and “modified transmit interrupt hand-
ler” simply alert the polling thread to the availability of work. All of the actual
packet processing is done in the “received packet processing” and “transmit packet
processing” routines, invoked at low IPL by the polling thread. (The polling mech-
anism itself is not shown in this figure.) The modified path does not use the
IP input queue at all, although it remains available for use by unmodified device
drivers. We retain the queue between the IP forwarding layer and the transmit
packet processing code, since an attempt to transmit a packet might block if the
output interface is busy.

The polling thread passes the callback procedures a quota on the number of
packets they are allowed to handle. Once a callback has used up its quota, it
must return to the polling thread. This allows the thread to round-robin between
multiple interfaces, and between input and output handling on any given interface,
to prevent a single input stream from monopolizing the CPU. After all the packets
pending at an interface have been handled, the polling thread also invokes the
driver’s interrupt-enable callback, so that a subsequent packet event will cause an
interrupt.

6.5 Results and Analysis

Figures 5 summarizes the results of our changes, when screend is not used. Several
different kernel configurations are shown, using different mark symbols on the graph.
The modified kernel (shown with square marks) slightly improves the MLFRR, and
avoids livelock at higher input rates.

The modified kernel can be configured to act as if it were an unmodified system
(shown with open circles), although this seems to perform slightly worse than an
actual unmodified system (filled circles). The reasons are not clear, but may involve
slightly longer code paths, different compilers, or unfortunate changes in instruction
cache conflicts.

6.6 Scheduling Heuristics

Figure 5 shows that if the polling thread places no quota on the number of packets
that a callback procedure can handle, when the input rate exceeds the MLFRR

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

232 : J. C. Mogul and K. K. Ramakrishnan

3000 | , |
B 25001 -
Ju
E 2000 ce o .
g a® Polling w/feedback
5 1500 o %° . O Polling, no feedback ~ —
3 %o ® Unmodified
& 1000} R —
5 b |
= s * 5 _&o .
o e O .. ° DD DDD O
0 ! ! ! Sl G0 4
0 2000 4000 6000 8000 10000 12000
Input packet rate (pkts/sec)

Fig. 6. Forwarding performance of modified kernel, with screend.

the total forwarding throughput drops almost to zero (shown with diamonds in the
figure). This livelock occurs because although the packets are no longer discarded
at the IP input queue, they are still piling up (and being discarded) at the queue
for the output interface. This queue is unavoidable, since there is no guarantee that
the output interface runs as fast as the input interface.

Why does the system fail to drain the output queue? If packets arrive too fast,
the input-handling callback never finishes its job. This means that the polling
thread never gets to call the output-handling callback for the transmitting interface,
which prevents the release of transmitter buffer descriptors for use in further packet
transmissions. This is similar to the transmit starvation condition identified in
Section 4.4.

The result for the modified kernel, when no quota is imposed, is actually worse
than that for the unmodified system, because in the modified system packets are
being discarded for lack of space on the output queue, rather than on the IP input
queue. The unmodified kernel does less work per discarded packet, and therefore
occasionally discards them fast enough to catch up with a burst of input packets.

6.6.1 Feedback from Full Queues. How does the modified system perform when
the screend program is used? Figure 6 compares the performance of the unmodified
kernel (filled circles) and several modified kernels.

With the kernel modified as described so far (squares), the system performs about
as badly as the unmodified kernel. The problem is that, because screend runs in user
mode, the kernel must queue packets for delivery to screend. The kernel portion of
the screend implementation includes a special queue for these packets. When the
system is overloaded, this queue fills up, and packets are dropped. screend never
gets a chance to run to drain this queue, because the system devotes its cycles to
handling input packets.

To resolve this problem, we detect when the screening queue becomes full and
inhibit further input processing (and input interrupts) until more queue space is
available. The result is shown with the gray square marks in Figure 6: no live-
lock, and much improved peak throughput (the MLFRR increases from under 2000
packets/sec. to over 2900 packets/sec.) Feedback from the queue state means that
the system properly allocates CPU resources to move packets all the way through

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 233

6000 T | | | |
—_ < quota = infinity S
§ 5000 - & quota= 100 packets ‘p'!ﬂ o o0o Bopo O _
2 W quota = 20 packets P4 ?_ o+, 4t 4
& 4000 [~ + quota= 10 packets —
g O quota =5 packets 4
g 3000 — —
X |
* an® [
8 o0l . u gt maE g |
E »
S 1000 — *e —
= A e %0 0% 0 o
0 | | | 0000 @ 0 S
0 2000 4000 6000 8000 10000 12000

Input packet rate (pkts/sec)

Fig. 7. Effect of packet-count quota on performance, no screend.

the system, instead of dropping them at an intermediate point.

In these experiments, the polling quota was 10 packets, the screening queue was
limited to 32 packets, and we inhibited input processing when the queue was 75%
full. Input processing is reenabled when the screening queue becomes 25% full. We
chose these high and low water marks arbitrarily, and some tuning might help. We
also set a timeout (arbitrarily chosen as one clock tick, or about 1 msec.) after
which input is reenabled, in case the screend program is hung, so that packets for
other consumers are not dropped indefinitely.

The same queue-state feedback technique could be applied to other queues in the
system, such as interface output queues, packet filter queues (for use in network
monitoring) [Mogul 1990; Mogul et al. 1987], etc. The feedback policies for these
queues would be more complex, since it might be difficult to determine if input
processing load was actually preventing progress at these queues. Because the
screend program is typically run as the only application on a system, however, a
full screening queue is an unequivocal signal that too many packets are arriving.

6.6.2 Choice of Packet-Count Quota. To avoid livelock in the non-screend con-
figuration, we had to set a quota on the number of packets processed per callback,
so we investigated how system throughput changes as the quota is varied. Figure
7 shows the results; smaller quotas work better. As the quota increases, livelock
becomes more of a problem.

Since the optimal quota setting probably varies depending on the specific hard-
ware configuration, we took a closer look at the sensitivity of the non-screend results
to the quota setting. Figure 8 shows that, as we varied the quota from 2 to 20 pack-
ets, both the peak forwarding rate (over all input rates tested) and the asymptotic
forwarding rate (for the highest input rate tested) reach their maxima at a quota of
8 packets. Setting the quota above this point quickly leads to livelock, as the input
stream monopolizes the CPU. Setting the quota below this point avoids livelock,
but does reduce peak performance, because the polling overhead is amortized over
a smaller number of packets. Figure 8 suggests that, when setting the quota, one
should err toward high values if peak performance is the primary goal, but toward
low values if avoiding livelock is more important.

When screend is used, however, the queue-state feedback mechanism prevents

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

234 : J. C. Mogul and K. K. Ramakrishnan
6000

5000 —

@—@ Peak output rate (for any input rate) s
3000~ <&- < Asymptotic output rate (for peak input rate) . —

Output packet rate (pkts/sec)
8
3
I

2000 | | | g
0 5 10 15 20
Polling quota
Fig. 8. Sensitivity of packet-count quota, no screend.
3000
| FTB SRRt vy
_ Bi SFIB B utoanctayy
§ 2500
@ %
5 2000 - .
g - <> quota = infinity
’{5 1500 — @ quota = 100 packets —
—é B quota = 20 packets
o 1000 — + quota = 10 packets —
E_ O quota = 5 packets
g s —
0 | | | | |
0 2000 4000 6000 8000 10000 12000

Input packet rate (pkts/sec)

Fig. 9. Effect of packet-count quota on performance, with screend.

livelock, and small quotas slightly reduce maximum throughput (by about 5%).
We believe that by processing more packets per callback, the system amortizes the
cost of polling more effectively, but increasing the quota could also increase worst-
case per-packet latency. Once the quota is large enough to fill the screening queue
with a burst of packets, the feedback mechanism probably hides any potential for
improvement. Figure 9 shows the results when the screend process is in use.

In summary, tests both with and without screend suggest that a quota of about
seven or eight packets yields stable and near-optimum behavior, for the hardware
configuration tested. For other CPUs and network interfaces, the proper value may
differ, so this parameter should be tunable. Alternatively, it might be possible to
use a feedback-based control system to dynamically set the quota to a point just
below where livelock sets in.

7. GUARANTEEING PROGRESS FOR USER-LEVEL PROCESSES

The polling and queue-state feedback mechanisms described in Section 6.4 can
ensure that all necessary phases of packet processing make progress, even during
input overload. They are indifferent to the needs of other activities, however, so
user-level processes could still be starved for CPU cycles. This makes the system’s

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 235

80
70— }
60—
50—

threshold 25 %

-E] threshold 509% |

Available CPU time (per cent)
(S
I

30 —
20— —
threshold 75 %
10— —
0 threshold 100 %
0 2000 4000 6000 8000 10000

Input packet rate (pkts/sec)

Fig. 10. User-mode CPU time available using cycle-limit mechanism.

user interface unresponsive and interferes with housekeeping tasks (such as routing
table maintenance). We verified this effect by running a compute-bound process on
our modified router, and then flooding the router with minimum-sized packets to
be forwarded. The router forwarded the packets at the full rate (i.e., as if no user-
mode process were consuming resources), but the user process made no measurable
progress.

Since the root problem is that the packet-input-handling subsystem takes too
much of the CPU, we should be able to ameliorate that by simply measuring the
amount of CPU time spent handling received packets, and disabling input handling
if this exceeds a threshold.

The Alpha architecture, on which we did these experiments, includes a high-
resolution low-overhead counter register. This register counts every instruction
cycle (in current implementations) and can be read in one instruction, without any
data cache misses. Other modern architectures support similar counters.

We measure the CPU usage over a period defined as several clock ticks (10
msec., in our current implementation, chosen arbitrarily to match the scheduler’s
quantum). Once each period, a timer function clears a running total of CPU cycles
used in the packet-processing code. Each time our modified kernel begins its polling
loop, it reads the Alpha’s cycle counter register, and reads it again at the end of
the loop, to measure the number of cycles spent handling input and output packets
during the loop. (The quota mechanism ensures that this interval is relatively
short.) This number is then added to the running total, and if this total is above
a threshold, input handling is immediately inhibited. At the end of the current
period, a timer reenables input handling. Execution of the system’s idle thread
also reenables input interrupts and clears the running total.

By adjusting the threshold to be a fraction of the total number of cycles in a
period, one can control fairly precisely the amount of CPU time spent processing
packets. We have not yet implemented a programming interface for this control; for
our tests, we simply patched a kernel global variable representing the percentage
allocated to network processing, and the kernel automatically translates this to a
number of cycles.

Figure 10 shows how much CPU time is available to a compute-bound user pro-

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

236 : J. C. Mogul and K. K. Ramakrishnan

cess, for several settings of the cycle threshold and various input rates. The curves
show fairly stable behavior as the input rate increases, but the user process does
not get as much CPU time as the threshold setting would imply.

Part of the discrepancy comes from system overhead; even with no input load,
the user process gets about 94% of the CPU cycles; the other 6% probably goes
to system background processes and some kernel overheads. Also, the cycle-limit
mechanism inhibits packet input processing but not output processing. At higher
input rates, before input is inhibited, the output queue fills enough to soak up
additional CPU cycles.

Measurement error could cause some additional discrepancy. The cycle threshold
is checked only after handling a burst of input packets (for these experiments,
the callback quota was five packets). With the system forwarding about 5000
packets/sec., handling a burst of five packets takes about 1 msec., or about 10% of
the threshold-checking period.

The initial dips in the curves for the 50% and 75% thresholds probably reflect
the cost of handling the actual interrupts; these cycles are not counted against the
threshold, and so the usage-limiting mechanism fails to realize that user-level code is
being short-changed. At input rates below saturation, each incoming packet may be
handled fast enough that no interrupt batching occurs, and so a significant number
of cycles are spent in the interrupt-handling path. As the input rate increases, the
receiving interface spends less time with interrupts enabled, and so fewer cycles are
spent in the interrupt-handling code.

With a cycle limit imposed on packet processing, the system is subjectively far
more responsive, even during heavy input overload. This improvement, however, is
mostly apparent for local users; any network-based interaction, such as Telnet, still
suffers because many packets are being dropped.

7.1 Performance of End-System Transport Protocols

The changes we made to the kernel potentially affect the performance of end-system
transport protocols, such as TCP and the UDP/RPC/XDR/NFS stack. Since we
have not yet applied our modifications to a high-speed network interface driver,
such as one for FDDI, we cannot yet measure this effect. (The test system can
easily saturate an Ethernet, so measuring TCP throughput over Ethernet shows no
effect.)

The technique of processing a received packet directly from the device driver
to the TCP layer, without placing the packet on an IP-level queue, was used by
Jacobson [1990] specifically to improve TCP performance. It should reduce the cost
of receiving a packet, by avoiding the queue operations and any associated locking;
it also should improve the latency of kernel-to-kernel interactions (such as TCP
acknowledgments and NFS RPCs). While we adopted this technique to help avoid
livelock, we also obtain its benefits in improved transport performance.

The technique of polling the interfaces should not reduce end-system perform-
ance, because it is done primarily during input overload. (Some implementations
use polling to avoid transmit interrupts altogether [Macklem 1991].) During over-
load, the unmodified system would not make any progress on applications or trans-
port protocols; the use of polling, queue-state feedback, and CPU cycle limits should
give the modified system a chance to make at least some progress.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 237

Although TCP processing can be done in the same thread as the lower levels of the
stack, NFS server implementations require separate threads of control, because a
server may block waiting for disk I/O. Traditional NFS implementations, especially
on servers, suffered badly from livelock because during overload the NFS threads
may never get a chance to run. With queue-state feedback from the NFS server’s
input queue, however, we should be able to avoid much of this problem. One could
also use the CPU cycle-limit mechanism to reserve some resources for the NFS
threads, although it might be difficult to find the ideal allocation.

8. MEASUREMENTS USING TRACES OF KERNEL EXECUTION

Although measurements showing the performance of a system under various loads
enable one to compare the ultimate benefits of several approaches, these numbers do
not provide a deep understanding of the internal behavior of an operating system.
We obtained traces of kernel execution to discover how the kernel is spending its
time, and to measure the latency for several paths.

These traces expose, in detail, how our modifications affect the delivery latency of
single packets (Section 8.1) and of bursts of several packets (Section 8.2). It would
be quite difficult to measure these latencies without such traces, since they affect
aspects of system behavior that are not directly visible to user-mode software.

The traces show that our modifications do indeed improve the delivery latency
both for single packets, and for the first packet of a burst, and verify that the
modifications do not add overhead to the packet delivery path. The traces also
reveal a subtle design problem, which slightly delays the delivery of later packets
in the same burst. Because the traces can show the kernel behavior in great detail,
they also give specific guidance on how to prevent the additional delay.

To obtain these traces, we used ATOM, an extremely flexible mechanism for
instrumenting software [Chen and Eustace 1995; Eustace and Srivastava 1995;
Srivastava and Eustace 1994]. ATOM takes a fully linked binary program (even
a Digital UNIX kernel) as input, and produces an instrumented binary as out-
put. One also supplies to ATOM a module describing which points in the code to
instrument, and a module containing analysis routines to execute at run-time.

Because ATOM allows the insertion of instrumentation at carefully chosen points
in the kernel, it is possible to trace kernel paths without adding much overhead at
all. We did the traces on a DECstation 3000/300, a relatively slow Alpha system.
On this system, tracing appeared to add about 1.5 usec. per call or return. We
did some trials in which almost all kernel procedures were traced, and others in
which only a few were traced. The former trials provided insight into the precise
code paths involved; the latter trials allowed us to obtain relatively accurate timing
information.

8.1 Traces of Single-Packet Activity

We started by instrumenting almost all kernel procedures, except for a few low-
level procedures that ATOM cannot currently trace and a small set of short but
frequently invoked auxiliary procedures. Tables I and II briefly describe the pro-
cedures that appear in these traces.

We ran traces while using the system to forward a single minimum-length IP /UDP
packet and extracted the relevant sequence of events. We could then plot these as

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

238

Table I.

J. C. Mogul and K. K. Ramakrishnan

Description of Important Procedures Shown in Timeline Traces

Procedure

Description

Thread Scheduling

thread _wakeup_prim
thread_run
assert_wait_mesg_head
netisr_input

Used by thread scheduler to unblock a waiting thread.

Switches between running threads.

Used by a thread to block on an event.

Notifies scheduler that the network software interrupt service routine
should be running.

Polling Facility

lanpoll_isr*

lanpoll_intsched*

Handler with service
requirements.

Informs polling facility that an interrupt requires service.

for software interrupt; polls devices

LANCE (FEthernet) Driver

Inintr
Inrint, Intint

Inrintpoll*, Intintpoll*
Inintena*

Inread

Inoutput, Instart
Input

Interrupt entry point for LANCE driver.

Original (non-polling) receiver and transmitter interrupt service
functions.

New (for polling) receiver and transmitter interrupt service functions.
Called to reenable LANCE interrupts.

Converts received packet buffer to mbuf chain.

Initiates packet transmission.

Converts outgoing mbuf chain to packet buffer.

Ethernet Layer

ether_input
ether_output

Parses MAC-level header of received packet.
Adds MAC-level header to outgoing packet.

IP Layer

ipintr
ipinput
ip_output
ip_forward

Software interrupt handler for IP packet input.
Parses IP header and dispatches received IP packet.
Creates IP header for outgoing packet.

Forwards packets when host acts as a router.

Clock Interrupts

hardclock, clock_tick

| Periodic (1024Hz) clock interrupt handler

*New routines added to support polling.

timelines showing how procedure calls and returns nest, using the relative “stack
level” to display the nesting. (Where the actual call stack includes uninstrumented
procedures, the plotted stack level does not include calls through these procedures.)

Figure 11 shows a timeline for the modified kernel with polling disabled, which
should approximate the behavior of an unmodified kernel. Figure 12 shows a
timeline for the kernel with polling enabled. Each call is marked with the name of
the procedure and the time at which the call was made, in microseconds since the
start of the timeline. Returns are not individually marked, but one may deduce
them from the decreases in stack level. Interrupts appear as if they were normal
procedure calls.

In each case, we ran a rapid series of trials and selected one timeline in which no
clock interrupts appear. To reduce the effects of cache misses, we never selected the
first trial of a series. Even so, the times shown in these timelines should be treated
as illustrative, but not necessarily typical. Also remember that instrumentation
overhead adds several hundred microseconds to the total elapsed time (about 1.5
usec. for each instrumented call or return). Finally, note that these tests were
performed on an unusually slow implementation of the Alpha architecture.

In Figure 11, with polling disabled, we see the following interesting events (marked

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 239

Table 1I. Description of Boring Procedures Shown in Timeline Traces

Procedure Description

thread_setrun, Thread scheduling and memory management
thread_continue,
thread_block,
switch_context,
pmap_activate,
get_thread_high

malloc, Memory allocation
free

m_leadingspace, Mbuf manipulation
m_freem,
m_free,

m_copym

Ininitdesc, LANCE (Ethernet) driver
Inget

arpresolve_local ARP layer

ip_forwardscreen, | TP layer
in_canforward,
in_broadcast,
gw_forwardscreen

bzero, Bulk memory operations
bcopy

with dots on the timelines):

0 psec.

19 psec.
29 usec.

77 usec.
142 psec.
191 psec.

264 usec.

327 usec.
444 psec.
922 psec.

544 psec.

A packet has arrived, and Inintr() is called to begin handling the
interrupt from the receiving LANCE Ethernet chip. (Several micro-
seconds have passed between interrupt assertion and the invocation
of Inintr().)

lnrint() is called to handle a received-packet interrupt.

Inrint() calls Inread() to begin packet processing, which includes copy-
ing the packet to an mbuf structure.

Inread() calls ether_input() to queue the received packet on the ipintr
queue; ether_input() then calls netisr_input() to schedule a software
interrupt.

lnintr() finishes its execution at device IPL.

After some thread-switching, ipinput() is invoked as a software inter-
rupt.

The IP-layer processing has determined that this packet should be for-
warded, has chosen a next-hop destination, and now calls ip_output()
to send the packet along.

The LANCE driver has decided to send the packet, and calls Input()
to hand the buffer chain to the device.

IP-layer processing is complete, and the software interrupt handler
exits.

The packet has been transmitted and the output interface has inter-
rupted, causing a call to Inintr().

Intint() is called to handle the transmit interrupt.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

240

14—

12—

Stack level

J. C. Mogul and K. K. Ramakrishnan

Stack level

633 usec.

. I
wn
& 8 3
2y § § 528
E 2 32 o5
£3 I R & g aCE
QE Y o % = b= Sg_]
K S 38 g gg B BeL
8% o oshs o S N8 35 038
‘5;|§ Ngge 35 & T -
g g KEYE o i &£ 2 5%
8 =z EyE 8% S p85c = 2
£ 3 o 2 8% 2 BSe
< {3.2% € s
k5] .—|§U 8 4 L
e o s | —
g8 §82 =
§Ed £ 52
i E —
£ =
| | | |
150 200 250 300 350
Timein usec
3 _
n ©O n
Q o© (=} D R ©
BoZeg g 2o 22 8 |
§4 S 9% 2 o qbd o = 98
B85 £2 % B Bes= g8 B 98
5 2 E E % g 3 =
Ex-g 8 8 2 &alte 28 8 2%
='8E 8203 35 8= £ g8
EFIE' gg g EQ S E £ 2 £
35 583 £ = |
i 2
| I|_| |
400 450 500 550 600 650
Timein usec

Fig. 11. Timeline forwarding a single packet, polling disabled.

Intint() exits, completing all activity related to this packet.

In Figure 12, with polling enabled, we see a slightly different sequence of events:

0 psec.
21 psec.
93 psec.
97 usec.

112 psec.
160 usec.

166 usec.
235 usec.
294 psec.

A packet has arrived, and again Inintr() is called to begin handling
the interrupt from the receiving LANCE chip.

lanpoll_intsched() is called to schedule a poll for this event.

Inintr() finishes its execution at device IPL. At this point, interrupts
from this interface are still disabled, and the CPU is entirely under
the control of the polling mechanism.

After some thread-switching, lanpoll_isr() is called as a software in-
terrupt handler, and begins its polling loop.

lnread() is called from lnrintpoll().

ether_input() determines that this is an IP packet, and does not place
it on a queue.

ipinput() is called directly from ether_input().

The IP-layer processing calls ip_output() to send the packet along.

The LANCE driver calls Input() to hand the buffer chain to the
device.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel 241
g g 3
— N~ 2] —
16 o558 %8 8 B
14— 8 3 &y gg8gs 5 2 |
83 % 22 5 5B 2
o Bc 5§ g 22
12 3582 98 S5 Ci3¢ -
5I%R BT
s 0F T -
& £x 5o B0
:gé 8- 95 5 g ¢ 3§ % n
N2 S ™ g =] 2
5 o E8F 0§ % € g EE e .
85§ St g §d gt 2 52
-E@E L‘_O'QS 8 5= < '%
4 =2 = Soe' o B8 & 7 —
g =gs § _c
2 & gﬁ £ g_& -
ol | | | | |
0 50 100 150 200 250 300 350
16 — Timein usec —
14— . -
co'ir"
121 %EE]
= E
- 10 = -
3 Y
~ 8- s -
5 3 B ge 8
6 = 58 SeB8 2K m
o 988 g%th gg 2 e g
3 %=z 287 28 8 zg
U BRI L En g BB]
21— | S -
0 | |
350 400 450 500 550 600 650
Timein usec
Fig. 12. Timeline forwarding a single packet, polling enabled.
407 psec. IP-layer processing is complete, and control returns to the polling
loop.
430 psec. lanpoll_isr() calls Inintena() to reenable interrupts from this device.
454 psec. The packet has been transmitted and the output interface has in-
terrupted, causing a call to lnintr(), which requests service for this
event.
492 psec. lanpoll_isr() is called without any thread-switching overhead, since
this is still the current thread.
544 psec. Intintpoll() is called to handle the transmit event.
586 wsec. lanpoll_isr() calls Inintena() to reenable interrupts from this device.
597 usec. lanpoll_isr() exits, completing all activity related to this packet.

From Figures 11 and 12, one might conclude that with polling enabled, the
kernel saves about 30 usec., mostly between the initial interrupt and the invocation
of ipinput(). It is dangerous to base timing comparisons on a single pair of traces,
and the instrumentation overhead confuses the situation somewhat. Therefore, we
built another kernel just instrumenting the calls to Inintr() and ipinput(), and then
ran a series of trials in order to obtain a statistically useful sample of the latency

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

242 : J. C. Mogul and K. K. Ramakrishnan

1 —
@
S | et
g o8
5
§ o061 ,
8 87 usec ® 100 usec
© 041 (Polling) / (No polling)
B !
g o2 ,
= 1
O ,
0 | O | | | |
80 D) 100 110 120 130 140

Path length in usec

Fig. 13. Distribution of latencies from Inintr() to ipinput().

between these two points in the code. Each trial resulted in at least 10,000 packet
receptions, almost all of which were short ICMP Echo packets.

The resulting distributions are shown in Figure 13. The medians are marked
with dots; the use of polling seems to reduce the median latency by about 13 usec.
Polling also seems to reduce the latency variance somewhat. Note that the non-
polling case includes the instrumentation overhead for one procedure return (from
Inintr()) that is not included in the other case. The non-polling kernel also includes
an extra “if” statement and an extra procedure call that were not present in the
unmodified kernel, but these should not account for much time.

In summary, we believe that the polling kernel, on this hardware, avoids about
10 psec. of work per packet, probably because it does not move each packet onto
and off of the ipintr queue. This is reassuring, since it relieves the concern that the
polling mechanism could actually add overhead to the packet reception path.

8.2 Traces of Packet Bursts

In Section 4.3, we discussed how the unmodified kernel added extra latency to the
processing of packets received in bursts. Figure 1 showed measurements of this
effect on an ULTRIX kernel. With the ATOM tools, we can repeat this kind of
measurement using our current test system. However, since ATOM cannot directly
measure the assertion of the hardware interrupt signal, we do not include the ker-
nel’s initial interrupt latency. We believe this missing time amounts to less than 10
microseconds.

Figure 14 shows traced timelines for the both the polling and non-polling kernels
forwarding a burst of three short packets. To reduce the clutter in this trace,
we instrumented only the most interesting procedures, and omitted most of the
procedure labels.

Both traces start with a call to Inintr(). In the non-polling trace (dotted line), the
first packet is delivered to the output interface by lnput() 462 usec. later (marked
with a gray square). In the polling trace (solid line), the first call to lnput() occurs
after just 366 usec. (solid square), or almost 100 psec. sooner. Some part of this
(perhaps 30 microseconds) comes from additional instrumentation overhead for the
non-polling kernel. The difference may also be affected, in either direction, by some

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 243

16 —

Input —— Polling enabled
ether_output

timerinterrupt =~~~ e Polling disabled

12— Input

14—

éonm

10— ether_output ether_output ether_output 77

Stack level

8 tnput rInput ;—"5 4nput

Input | r:jput

0 [R | |
0 20 400 600 800
Timein usec

1200

Fig. 14. Three-packet burst latency.

variation in the number of cache misses, although the trials were run repeatedly in
order to warm up the caches. We also carefully selected traces that included as few
clock interrupts as possible; each trace in Figure 14 contains one clock interrupt,
marked with a diamond. After accounting for these sources of potential error, we
still see a significantly lower initial forwarding latency in the polling kernel.

We expect, as in the experiments described in Section 4.3, that the first-packet
delivery latency for the non-polling kernel will increase with burst size; the first-
packet latency for the polling kernel should be independent of burst size.

While the polling kernel delivers the first packet much sooner, the non-polling
kernel manages to deliver the second and third packets at 682 usec. and 949 usec.,
respectively, while the polling kernel waits to deliver its second and third packets
until 898 and 978 usec.

The cause for this discrepancy comes from an assumption in the 4.2BSD design
that until the transmitter interrupts, no new packets should be added to its output
buffer. Until the interrupt is serviced, the interface is marked “active,” which
causes the upper-layer code to leave it alone. The non-polling kernel services the
first transmitter interrupt (at 590 psec.) immediately, which allows it to restart the
transmitter as soon as the second packet is ready for output. The polling kernel
receives the transmit interrupt sooner (at 534 usec.) but because the polling thread
is still busy with the pending input packets, it fails to service the interrupt and so
leaves the interface marked “active.”

If we were to change the code to queue additional output packets even while the
interface was active, the polling kernel would deliver those packets shortly after
where it now calls ether_output(), at 628 usec. and 775 usec., respectively (solid
circles). The corresponding points on the non-polling trace are marked with gray
circles; they come at essentially the same relative times, after correcting for tracing
overhead.

We believe that this simple change would therefore eliminate the excess latency,
although it would add some per-packet overhead. The primary cause of this over-
head is that starting packet transmissions more often could reduce the mean number
of packets sent in one invocation of the driver’s output code, which decreases the

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

244 : J. C. Mogul and K. K. Ramakrishnan

chances for amortizing the costs of device interaction over several packets. Device
interaction is expensive, in part because it requires non-cachable loads and stores.
Another result of starting transmissions more often is that, when the output link
is not saturated, this could increase the rate of transmitter interrupts (it should
not affect the number of interrupts when the output link is saturated). These
overheads could reduce the peak forwarding rate of the system, although without
leading to livelock. It may be necessary to choose between optimizing throughput
and optimizing latency.

The polling kernel also spends a little more time handling transmitter interrupts
than the non-polling kernel, because after all three packets of the burst have been
fully processed, the polling kernel still schedules the polling mechanism to see if
anything else needs to be done. This does not add extra overhead during conditions
of input overload, because then the polling mechanism would have useful work to
do. However, at lower input rates it does rob cycles from other system tasks. We
believe that there are several possible solutions to this problem, including different
interrupt-generation schemes in the interface hardware, or some form of “clocked
interrupts” [Smith and Traw 1993; Traw and Smith 1993].

8.2.1 Implications for Other Applications. Although our changes improve end-
to-end latency for the first packet in a burst of forwarded packets, packet forwarding
is an unusual application because almost all of the work can be done without
blocking. Most other applications, whether in-kernel (such as NFS service), or
user-mode, require received packets to be queued for processing by another thread.
Do our changes improve latency for these applications?

We note that as long as the polling thread has complete control of the CPU re-
sources, nothing else can happen. (Kernel threads in Digital UNIX are preemptable
with fixed priorities, and the polling thread runs at a priority above those of all
consumers of network packets.) In particular, no other thread can start processing
the first packet of a burst. We can see two ways to avoid this problem:

—DMultiprocessing: if the number of polling threads is smaller than the number of
CPUs, at least some CPU resources will be available to finish processing early
packets while the polling thread (or threads) continues to receive later packets.

—CPU-time limits: in Section 7 we described how our polling mechanism can set a
limit on the fraction of CPU time spent in the polling thread. We implemented
this by disabling polling after the thread has used m msec. out of an n-msec.
period. This has the side-effect of limiting first-packet latency (as seen by the
next consumer after the polling thread) to approximately m msec., unless the
burst starts while polling is inhibited because of overload.

Neither of these completely solves the problem, but at least the polling mechan-
ism provides these partial solutions; in a purely interrupt-driven kernel, user-mode
application might have to wait for an unbounded interval to receive the first packet.

9. AVOIDING LIVELOCK IN A PROMISCUOUS NETWORK MONITOR

LAN-monitoring applications typically require the host computer to place its net-
work interface(s) into “promiscuous mode,” receiving all packets on the LAN, not
just those addressed to the host itself. While a modern workstation can easily

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 245

handle the full large-packet data rate of a high-speed LAN, if the LAN is flooded
with small packets, even fast hosts might not keep up. For example, an FDDI LAN
can carry up to 227,000 packets per second. At that rate, a host has about 4.4
usec. to process each packet.

The tepdump application obtains packets from the kernel using the packet filter
pseudo-device driver [Mogul et al. 1987]. Packet filtering (the selection of which re-
ceived packets to hand to tcpdump) is done in the received-packet interrupt handler
thread, and the resulting packets are put on a queue for delivery to the application.
During overload conditions, the kernel discards packets because the application has
no chance to drain this queue.

While the behavior of a system running tcpdump is fairly similar to that of one
running screend, we include a brief discussion of how our modifications affect tcp-
dump because we have found that livelock is more likely to arise in this application
than for packet routing. Many sources of packet flows, especially TCP senders,
do react to packets lost at a congested router by reducing their transmission rate.
But a network monitor is passive by definition, and so we cannot expect packet
sources to slow down when a passive monitor is overloaded. In fact, one of the
most important uses of a network monitor is to locate the cause of an anomalous
network overload; a livelocked monitor would be worthless here.

Note that tepdump normally only looks at the packet headers, and so requests
just the first 68 bytes of each packet. Since the kernel does not touch the remaining
bytes of the packet, tcpdump throughput is nearly independent of packet size; its
speed depends on per-packet, not per-byte, overheads.

We modified our polling kernel to implement queue-state feedback (see Section
6.4) from the packet filter queue. For the measurements described here, the queue
can contain at most 32 packets. Whenever the queue has room for fewer than eight
additional packets, we disable polling. We also set a one-millisecond timeout, after
which polling is reenabled. There is no direct mechanism to reenable polling when
more queue space has been made available, although perhaps there should be.

We then tested the network-monitoring performance of the modified kernel. We
set up a relatively slow system (a DECstation 3000/300) as the network monitor,
and a faster system (a DECstation 3000/400) as a packet generator. The generator
sent streams of packets to a third host on the same Ethernet, and tepdump on
the network monitor attempted to capture all of them, filtering on the UDP port
number. For each trial, we sent between 10,000 and 30,000 packets at various rates,
and measured the number of packets received by the monitor.

In all of these trials, we found that very few packets were dropped at the receiving
interface. This means that almost all losses happened because the packet filter
queue was full, not because the kernel failed to service the interface rapidly enough.

Figure 15 shows the results for all of our tcpdump trials.

In our first set of trials, we configured tepdump to simply copy the packet headers
to the null device, /dev/null, instead of regular disk file. This should reduce the
per-packet overhead and so increase the MLFRR.

The use of queue-state feedback clearly results in much better peak packet capture
performance. It is tempting to infer that the use of feedback also improves overload
behavior, but the rates measured in the /dev/null trials do not quite reach the
saturation point, and so provide no direct evidence about performance above that

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

246 : J. C. Mogul and K. K. Ramakrishnan

10000 — _
— — — Hypothetical loss-free rate T

o 8000 — ® /dev/null, with feedback P

g m disk file, with feedback

5 6000 O /dev/null, no feedback

5 + disk file, no feedback .

g 40001 T o

= (0]

2 =+ o+

= 2000 —

0 | | | | e | o
0 2000 4000 6000 8000 10000 12000
Input rate (packets per second)
Fig. 15. tcpdump capture rate, all trials shown.
rate.

Note that at rates above the MLFRR of the no-feedback system, even with
queue-state feedback the system does lose some packets. (The gray dashed line
shows the performance of a hypothetical loss-free system.) We attribute this to the
necessarily finite size of the packet filter queue: even though queue-state feedback
inhibits input processing when the queue becomes full, the one-millisecond timeout
happens before tepdump has drained much of the queue, and so the kernel has no
place to put the next batch of packets.

The results for the no-feedback kernel show a noisy relationship between input
and output rates, above the MLFRR. This is because the packet generator is a
relatively bursty source, and the mean burst size changes for different long-term
generated rates. When the mean burst size is large, the network monitor processes
more packets per interrupt, thus using fewer CPU cycles and leaving more for the
tepdump application.

We also ran trials with tcpdump writing the received packet headers to a disk file.
This added just enough per-packet overhead to allow us to saturate the system,
even with queue-state feedback, at an input rate of about 9000 packets/sec. (and
a capture rate of about 7700 packets/sec.). Below the saturation point, the extra
overhead of writing headers to the disk has only a small effect on capture rate.

10. RELATED WORK

Polling mechanisms have been used before in UNIX-based systems, both in network
code and in other contexts. Whereas we have used polling to provide fairness and
guaranteed progress, the previous applications of polling were intended to reduce
the overhead associated with interrupt service. This does reduce the chances of
system overload (for a given input rate), but does not prevent livelock.

Traw and Smith [Smith and Traw 1993; Traw and Smith 1993] describe the use
of “clocked interrupts”: periodic polling to learn of arriving packets without the
overhead of per-packet interrupts. They point out that it is hard to choose the
proper polling frequency: too high, and the system spends all its time polling; too
low, and the receive latency soars. Their analysis [Smith and Traw 1993] seems
to ignore the use of interrupt batching to reduce the interrupt-service overhead;

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 247

however, they do allude to the possibility of using a scheme in which an interrupt
prompts polling for other events.

The 4.3BSD operating system [Leffler et al. 1989] apparently used a periodic
polling technique to process received characters from an eight-port terminal inter-
face, if the recent input rate increased above a certain threshold. The intent seems
to have been to avoid losing input characters (the device had little buffering avail-
able) but one could view this as a sort of livelock-avoidance strategy. Several router
implementations use polling as their primary way to schedule packet processing.

When a congested router must drop a packet, its choice of which packet to drop
can have significant effects. Our modifications do not affect which packets are
dropped; we only change when they are dropped. The policy was and remains
“drop-tail”; other policies might provide better results [Floyd and Jacobson 1993].

Fall [1994] discusses the problem of overload in non-flow-controlled systems such
as routers. His approach improves system behavior by reducing per-packet and
per-byte overheads, and thus increases the MLFRR, but does not directly improve
overload behavior. His approach complements ours, but does not solve the livelock
problem.

Druschel and Banga’s “Lazy Receiver Processing” (LRP) [Druschel and Banga
1996] work is a more radical approach, which includes among its goals a partial
solution to the livelock problem. LRP depends on early demultiplexing of received
packets, which can either be done in software (SOFT-LRP), or in a special network
interface (NI-LRP). NI-LRP fully solves the livelock problem, by explicitly shedding
excess load in the network interface, whereas our approach implicitly sheds excess
load by simply not servicing the interface. NI-LRP therefore can select which
packets to drop, based on higher-level considerations; our approach is oblivious to
the value of any given packet. SOFT-LRP postpones livelock, by improving system
efficiency, but does not prevent it. It may be possible to combine the SOFT-LRP
design with some of our techniques, thereby achieving both high performance and
preventing livelock, without requiring special network interface implementations.

Mosberger and Peterson [1996] describe an even more radical approach in the
Scout operating system, which uses the concept of a “path” as its basic design
principle. Paths, as used in Scout, are a more formal version of the LRP approach,
relying on early packet classification to assign high-level priorities to packets, im-
mediately upon reception. This gives Scout the ability to shed load selectively; it
is not clear if Scout currently prevents livelock in all situations. Scout, LRP, and
our work all share the premise that if a packet is going to be dropped, it is better
to drop it as early as possible.

Massalin and Pu [1990] describe a feedback-based scheduling system, used in the
Synthesis Kernel, which adjusts the amount of CPU time allocated to a thread,
based on queue lengths. This scheduler attempts to avoid congestion by allocating
more time to threads with full input queues, and less time to threads with full
output queues. Our approach is vaguely similar, although cruder: we simply shut
off the input to the polling system when any of its output queues becomes too full,
which implicitly stops it from consuming CPU time.

Some of our initial work on improved interface driver algorithms is described in
Chang et al. [1993].

Some of the work presented in this article was first done in the context of Ca-

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

248 : J. C. Mogul and K. K. Ramakrishnan

laveras, an advanced development project at Digital [Ramakrishnan et al. 1995;
Vahalia et al. 1995]. The Calaveras kernel was designed to provide a foundation for
building a high-bandwidth distributed file server capable of supporting traditional
data as well as continuous media; in particular, it was used for a video-on-demand
server. The Calaveras scheduler supported three classes of tasks, including isochron-
ous tasks (primarily for video and audio streams), real-time tasks with weights for
allocating CPU resources, and general-purpose tasks. Interrupt handlers did no
work except to set a flag indicating that a device needed service; the rest of the
job of servicing an I/O event was then performed by a real-time task, invoked by a
polling thread. Livelock was thus avoided, as long as the interrupt interarrival time
was longer than the time required to handle each interrupt and set the flag. This
lightweight-handler design also reduced interrupt overhead, because very little CPU
state had to be saved on an interrupt. Measurements of the Calaveras prototype
showed that it did succeed in avoiding livelock.

11. FUTURE WORK

Although the implementation described in this article is straightforward and robust,
and earlier versions have been deployed to customer installations, we see several
areas that may require additional research.

11.1 Faster Implementations

The experiments reported on in this article were done on a relatively slow LAN
(Ethernet, at 10 Mbits/sec.) and on the slowest available CPU that would run the
Digital UNIX operating system. This allowed us to investigate the performance
regime at and near overload, but the results cannot be extrapolated to predict the
performance of state-of-the-art LANs and CPUs.

Use of faster CPUs in itself would be no problem; our kernel will run without
modification on the fastest Alpha system. However, we would be unable to saturate
such a system with our existing Ethernet-based test setup. To do high-speed exper-
iments, we would have to obtain or construct a much faster packet generator. We
would also have to apply our modifications to a driver for a faster LAN technology,
such as FDDI or ATM. Unfortunately, such drivers seem to be far more complex
than those for Ethernet interfaces. (Fast Ethernet would provide a suitable LAN
speed, but no Fast Ethernet interface is available for the ancient Alpha workstation
we used in these experiments.)

Memory-system performance has not usually improved quite as rapidly as the
peak CPU instruction issue rate. This implies that future processors will be less
sensitive to instruction counts, and more sensitive to memory locality. We expect
that this will change the relative performance advantages of our kernel modifica-
tions, but we cannot predict which direction these changes will go.

11.2 Extension to Multiprocessor Kernels

Most, computer vendors now sell some form of multiprocessor, to increase the per-
formance of high-end systems beyond what is possible with a single CPU. Symmet-
ric Multiprocessing (SMP) systems have been quite successful in many applications,
and typically run a traditional operating system kernel that has been modified to
support multiple kernel threads.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 249

Although Digital UNIX is an SMP kernel, we have not yet extended our work
to a true SMP environment. Qur current kernel could run on SMP hardware, but
it would do all of the interface driver and network processing on just one of the
Processors.

We believe that our polling approach allows better parallelization of interface
and network processing, and so should improve performance on SMP systems. In
order to demonstrate this, we would have to extend our modifications to include
multiple polling threads, and we may have to modify the interface drivers to support
concurrency in what were originally interrupt service routines (which are not run
concurrently in the original system).

The use of multiple polling threads, while providing the opportunity for parallel-
ization, also presents some challenges. How many threads should be active at once?
If CPU cycle limits are enabled, should they apply individually to each CPU, or
to the entire system? And will the extra overhead of locking defeat the purpose of
parallelization?

11.3 Selective Packet Dropping

Our approach to input overload is to drop packets as early as possible, to avoid
spending resources on packets that would be dropped later on. This is a policy
about when to drop packets, not about which packets to drop. In many cases,
some packets may be much more important than others, and the system would be
more effective if it preserved those when possible.

For example, when video streams are sent using Motion-JPEG compression, in-
dividual frames are independent of each other. A frame may be made up of several
packets, all of which must be received for successful decompression. If one must
discard several packets within a short interval, it is better to discard all of the
packets of one frame rather than spreading the discarded packets among multiple
frames, which then might all be impossible to decompress. Similarly, Romanow
and Floyd [1995] have pointed out that if an ATM switch must drop multiple cells,
it is better to drop all the cells of one packet rather than to spread the cell loss
evenly over many packets.

Fall et al. [1995] have proposed early discard load shedding for Motion-JPEG
streams, a technique in which frames are discarded as early in the processing
pipeline as possible. Their goal is to shed load before the system becomes over-
loaded, while we have focused on responding to overload, but in either case it seems
useful to be able to identify specific classes of packets to drop.

When received packets are dropped late, and therefore at upper levels in the
network stack, it is fairly easy to determine which ones are useful and which ones
are expendable. In our approach, because we have tried to drop packets as early as
possible, perhaps before the software even sees them, it could be quite hard to drop
all of the packets from one Motion-JPEG frame instead of spreading the losses at
random.

Note that labeling techniques such as virtual circuits, “flows,” and packet priorit-
ies do not help here: from the sender’s point of view, each Motion-JPEG frame has
the same priority. One cannot a priori say that a given packet is more important
than another; only when one is forced to drop a packet does it then become possible
to define other packets as good targets for dropping.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

250 : J. C. Mogul and K. K. Ramakrishnan

11.4 Interactions with Application-Layer Scheduling

We see several connections between scheduling the processing of received packets,
and scheduling of application (user-mode) processes. At input rates below the ML-
FRR, it may be appropriate to modify the order in which packets are processed so as
to reduce latency for packets destined to currently running processes, or to provide
batching across the kernel-user boundary (and so reduce context switching). At
higher input rates, where some packets must be discarded, the packet-discard policy
might favor packets for currently scheduled processes; this could avoid thrashing.
In either case, the process scheduler might prefer to give time to a process that has
a large queue of pending packets.

Waldspurger has developed a proportional-share framework for expressing and
implementing application scheduling policies [Waldspurger 1995; Waldspurger and
Weihl 1994; 1995]. In this framework, resource shares can be expressed in a kind
of currency. He suggests (personal communication, 1995) that if arriving packets,
by the use of some simple labeling scheme, carry tokens in such a currency, it
might be possible to integrate the packet-level scheduling decisions with process-
level scheduling.

For example, suppose that packets were simply marked with the ID of the re-
ceiving process. As packets arrive for various processes, the kernel could track the
number of unreceived packets per blocked process, and unblock the process with the
largest batch of work to perform. If the system becomes overloaded, the network
thread might start discarding all packets except for those destined to the current
process.

Or suppose we want to drop excess packets according to some predetermined
allocation of resources to processes. The network processing thread could keep
track of how many packets have been received for each process during a recent
interval, and discard packets in such a way as to maintain packet-consumption
rates in proportion to the predetermined resource allocations.

We believe that such mechanisms could be implemented with minimal overhead,
but we do not yet know how useful they would be.

12. SUMMARY AND CONCLUSIONS

Systems that behave poorly under receive overload fail to provide consistent per-
formance and good interactive behavior. Livelock is never the best response to
overload. In this article, we have shown how to understand system overload be-
havior and how to improve it, by carefully scheduling when packet processing is
done.

We have shown, using measurements of a UNIX system, that traditional interrupt-
driven systems perform badly under overload, resulting in receive livelock and star-
vation of transmits. Because such systems progressively reduce the priority of
processing a packet as it goes further into the system, when overloaded they ex-
hibit excessive packet loss and wasted work. Such pathologies may be caused not
only by long-term receive overload, but also by transient overload from short-term
bursty arrivals.

We described a set of scheduling improvements that help solve the problem of
poor overload behavior. These include:

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

Eliminating Receive Livelock in an Interrupt-Driven Kernel : 251

—Limiting interrupt arrival rates, to shed overload
Polling to provide fairness

—Carefully switching between polling and interrupts
Processing received packets to completion

—Explicitly regulating CPU usage for packet processing
Using feedback to inhibit input that would be discarded

Our experiments showed that these scheduling mechanisms provide good overload
behavior and eliminate receive livelock. They should help both special-purpose and
general-purpose systems.

ACKNOWLEDGMENTS

We had help both in making measurements and in understanding system perform-
ance from many people, including Bill Hawe, Tony Lauck, John Poulin, Uttam
Shikarpur, and John Dustin. Venkata Padmanabhan, David Cherkus, Kevin Fall,
Hal Murray, Carl Waldspurger, and Jeffry Yaplee helped during manuscript pre-
paration. Marc Viredaz helped us work around a bug in the ACM TOPLAS Latex
style file.

Most of K. K. Ramakrishnan’s work on this article was done while he was an
employee of Digital Equipment Corporation.

REFERENCES

CHANG, C.-H., FLOWER, R., ForecasT, J.;, GrAy, H., HAwe, W. R., NADKARNI, A. P., RA-
MAKRISHNAN, K. K., SHIKARPUR, U. N., AND WILDE, K. M. 1993. High-performance TCP/IP
and UDP/IP networking in DEC OSF/1 for Alpha AXP. Digital Tech. J. 5,1 (Winter), 44-61.

CHEN, J. B. AND EuSTACE, A. 1995. Kernel instrumentatijon tools and techniques. Tech. Rep.
TR-26-95, Harvard Univ. Center for Research in Computing Technology, Cambridge, Mass.
Nov.

DRUSCHEL, P. AND BANGA, G. 1996. Lazy Receiver Processing (LRP): A network subsystem
architecture for server systems. In Proceedings of the 2nd Symposium on Operating Systems
Design and Implementation. USENIX Assoc., Berkeley, Calif., 261 275.

EUSTACE, A. AND SRIVASTAVA, A. 1995. ATOM: A flexible interface for building high performance
program analysis tools. In Proceedings of the 1995 USENIX Conference. USENIX Assoc.,
Berkeley, Calif., 303-313.

FaLL, K. 1994. A peer-to-peer I/O system in support of I/O intensive workloads. Ph.D. thesis,
Univ. of California, San Diego.

FaLL, K., PASQUALE, J., AND MCCANNE, S. 1995. Workstation video playback performance with
competitive process load. In Proceedings of the 5th International Workshop on Network and
Operating Systems Support for Digital Audio and Video. IEEE Communications Society, New
York, 179 182.

FERRARI, D., PASQUALE, J., AND PoLyzos, G. C. 1991. Network issues for Sequoia 2000. Sequoia
2000 Tech. Rep. 91/6, Univ. of California, Berkeley. Dec.

FLoyDp, S. AND JACOBSON, V. 1993. Random early detection gateways for congestion avoidance.
Trans. Networking 1, 4 (Aug.), 397-413.

JACOBSON, V. 1990. Efficient protocol implementation. In bound notes provided at ACM SIG-
COMM 90 Tutorial on “Protocols for High-Speed Networks”.

LEFFLER, S. J., McCusick, M. K., KARELS, M. J., AND QUARTERMAN, J. S. 1989. The Design
and Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley, Reading, Mass.

MACKLEM, R. 1991. Lessons learned tuning the 4.3BSD Reno implementation of the NF'S protocol.
In Proceedings of the Winter 1991 USENIX Conference. USENIX Assoc., Berkeley, Calif., 53
64.

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

252 : J. C. Mogul and K. K. Ramakrishnan

MassALIN, H. AND Pu, C. 1990. Fine-grain adaptive scheduling using feedback. Comput. Syst. 3, 1
(Winter), 139-174.

MoguL, J. C. 1989. Simple and flexible datagram access controls for UNIX-based gateways.
In Proceedings of the Summer 1989 USENIX Conference. USENIX Assoc., Berkeley, Calif.,
203 221.

Mogur, J. C. 1990. Efficient use of workstations for passive monitoring of local area networks. In
Proceedings of the SIGCOMM ’90 Symposium on Communications Architectures and Protocols.
ACM, New York, 253-263.

Mogur, J. C., Rasuin, R. F., AND AccerTAa, M. J. 1987. The Packet Filter: An efficient
mechanism for user-level network code. In Proceedings of the 11th Symposium on Operating
Systems Principles. ACM, Austin, Texas, 39-51.

MOSBERGER, D. AND PETERSON, L. L. 1996. Making paths explicit in the scout operating sys-
tem. In Proceedings of the 2nd Symposium on Operating Systems Design and I'mplementation.
USENIX Assoc., Berkeley, Calif., 153 167.

PERLMAN, R. 1983. Fault-tolerant broadcast of routing information. Comput. Networks 7, 6
(Dec.), 395 405.

RAMAKRISHNAN, K. K. 1992. Scheduling issues for interfacing to high speed networks. In Pro-
ceedings of the Globecom ’92 IEEE Global Telecommunications Conference. IEEE, New York,
622 626.

RAMAKRISHNAN, K. K. 1993. Performance considerations in designing network interfaces. IFEE
J. Sel. Areas Commun. 11, 2 (Feb.), 203 219.

RAMAKRISHNAN, K. K., VAarrzBriT, L., GRAY, C., VAHALIA, U., TING, D., TzZELNIC, P., GLASER,
S., AND Duso, W. 1995. Operating system support for a video-on-demand file service. Multi-
media Syst. 3, 53-65.

RaNuM, M. J. AND AvoLio, F. M. 1994. A toolkit and methods for Internet firewalls. In Proceed-
ings of the Summer 1994 USENIX Conference. USENIX Assoc., Berkeley, Calif., 37 44.

Romanow, A. AND FLOYD, S. 1995. Dynamics of TCP traffic over ATM networks. IEEE J. Sel.
Areas Commun. 13, 4 (May), 633 641.

Smrrh, J. M. AND Traw, C. B. S. 1993. Giving applications access to Gb/s networking. IEEE
Network 7, 4 (July), 44 52.

Souza, R. J., KRISHNAKUMAR, P. G., C)ZVEREN, C. M., J.SIMCOE, R., SPINNEY, B. A., THOMAS,
R. E., AND WALSH, R. J. 1994. GIGAswitch: A high-performance packet switching platform.
Digital Tech. J. 6, 1 (Winter), 9 22.

SRIVASTAVA, A. AND EUSTACE, A. 1994. ATOM: A system for building customized program
analysis tools. In Proceedings of the SIGPLAN 94 Conference on Programming Language
Design and Implementation. ACM, New York, 196—205.

Traw, C. B. S. AND SMmiTH, J. M. 1993. Hardware/software organization of a high-performance
ATM host interface. IEEE J. Sel. Areas Commun. 11, 2 (Feb.), 240 253.

VAHALIA, U., GRAY, C. G., AND TING, D. 1995. Metadata logging in an NFS server. In Proceedings
of the 1995 USENIX Conference. USENIX Assoc., Berkeley, Calif., 265 276.

WALDSPURGER, C. A. 1995. Lottery and stride scheduling: Flexible proportional-share resource
management. Tech. Rep. MIT/LCS/TR-667, Massachusetts Institute of Technology Laboratory
for Computer Science, Cambridge, Mass. Sept.

WALDSPURGER, C. A. AND WEIHL, W. E. 1994. Lottery scheduling: Flexible proportional-share
resource management. In Proceedings of the 1st USENIX Symposium on Operating Systems
Design and Implementation (OSDI). USENIX Assoc., Berkeley, Calif., 1-11.

WALDSPURGER, C. A. AND WEIHL, W. E. 1995. Stride scheduling: Deterministic proportional-
share resource management. Tech. Memo. MIT/LCS/TM-528, Massachusetts Institute of Tech-
nology Laboratory for Computer Science, Cambridge, Mass. June.

Received May 1996; revised May 1997; accepted June 1997

ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.

