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218 � J. C. Mogul and K. K. Ramakrishnanare relatively rare, as is the case with disks, which seldom interrupt more than a fewhundred times per second. Polling can also increase the latency of response to anevent. Modern systems can respond to an interrupt in a few tens of microseconds;to achieve the same latency using polling, the system would have to poll tensof thousands of times per second, which would create excessive overhead. For ageneral-purpose system, an interrupt-driven design works best.Most extant operating systems were designed to handle I/O devices that inter-rupt every few milliseconds. Disks tended to issue events on the order of onceper revolution; �rst-generation LAN environments tend to generate a few hundredpackets per second for any single end-system. Although people understood the needto reduce the cost of taking an interrupt, in general this cost was low enough thatany normal system would spend only a fraction of its CPU time handling interrupts.The world has changed. Operating systems typically use the same interruptmechanisms to control both network processing and traditional I/O devices, yetmany new applications can generate packets several orders of magnitude more oftenthan a disk can generate seeks. Multimedia and other real-time applications willbecome widespread. Client-server applications, such as NFS, running on fast clientsand servers can generate heavy RPC loads. Multicast and broadcast protocolssubject innocent-bystander hosts to loads that do not interest them at all. Asa result, network implementations must now deal with signi�cantly higher eventrates.Many multimedia and client-server applications share another unpleasant prop-erty: unlike traditional network applications (Telnet, FTP, electronic mail), theyare not 
ow-controlled. Some multimedia applications want constant-rate, low-latency service. RPC-based client-server applications often use datagram-styletransports, instead of reliable, 
ow-controlled protocols. For example, the mostcommon UNIX NFS client implementation can generate numerous RPC requestsin parallel from one client host. And even when a particular instance of an applica-tion is 
ow-controlled, when the number of potential clients is large or unbounded(e.g., an Internet Web server), the system under load has no way to defer requestsfrom new clients. Note that whereas I/O devices such as disks generate interruptsonly as a result of requests from the operating system, and so are inherently 
ow-controlled, network interfaces generate unsolicited receive interrupts.The shift to higher event rates and non-
ow-controlled protocols can subjecta host to congestive collapse: once the event rate saturates the system, without anegative feedback loop to control the sources, there is no way to gracefully shed load.If the host runs at full throughput under these conditions, and gives fair serviceto all sources, this at least preserves the possibility of stability. But if throughputdecreases as the o�ered load increases, the overall system becomes unstable.In short, temporary overload conditions are a fact of life for many kinds of sys-tems. It may be infeasible to con�gure such systems to accommodate the peakpotential load, yet we certainly would prefer that they respond gracefully to peaks:shedding or deferring load, rather than collapsing.Interrupt-driven systems tend to perform badly under overload. Tasks performedat interrupt level, by de�nition, have absolute priority over all other tasks. If theevent rate is high enough to cause the system to spend all of its time respondingto interrupts, then nothing else will happen, and the system throughput will dropACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



Eliminating Receive Livelock in an Interrupt-Driven Kernel � 219to zero. We call this condition receive livelock: the system is not deadlocked,but it makes no progress on any of its tasks. Any purely interrupt-driven systemusing �xed interrupt priorities will su�er from receive livelock under input overloadconditions. Once the input rate exceeds the reciprocal of the CPU cost of processingone input event, any task scheduled at a lower priority will not get a chance to run.Yet we do not want to lightly discard the obvious bene�ts of an interrupt-drivendesign. Instead, we should integrate control of the network interrupt handlingsubsystem into the operating system's scheduling mechanisms and policies. In thisarticle, we present a number of simple modi�cations to the purely interrupt-drivenmodel. We start with a hybrid design in which the system polls only when triggeredby an interrupt, and interrupts happen only when polling is suspended; this provideslow latency under low loads, and high throughput under high loads. We augmentthe design with simple feedback control, so that when the system is overloadedand must drop packets, it drops the ones in which it has the least investment. Wealso create a simple connection between the traditional scheduling system and thenetwork subsystem, in order to guarantee some CPU time to user tasks even duringperiods of overload.Later in the article, we describe the results of benchmarks demonstrating thatour modi�cations do indeed guarantee throughput and fairness under overload,while also improving peak throughput and latency, and still preserving the desirablequalities of an interrupt-driven system under light load.2. MOTIVATING APPLICATIONSWe were led to our investigations by a number of speci�c applications that cansu�er from livelock. Such applications could be built on dedicated single-purposesystems, but are often built using a general-purpose system such as UNIX, and wewanted to �nd a general solution to the livelock problem. The applications include:|Host-based routing: Although internetwork routing is traditionally done usingspecial-purpose (usually non-interrupt-driven) router systems, routing is oftendone using more conventional hosts. Virtually all Internet \�rewall" productsuse UNIX or Windows NT systems for routing [Mogul 1989; Ranum and Avolio1994]. Much experimentation with new routing algorithms is done on UNIX[Ferrari et al. 1991], especially for IP multicasting.|Passive network monitoring: Network managers, developers, and researcherscommonly use UNIX systems, with their network interfaces in \promiscuousmode," to monitor tra�c on a LAN for debugging or statistics gathering [Mogul1990].|Network �le service: Servers for protocols such as NFS are commonly built fromUNIX systems.These applications (and others like them, such as Web servers) are all potentiallyexposed to heavy, non-
ow-controlled loads.This problem is not simply of theoretical interest. We have encountered livelockin all three of these applications, either in real-life use, or when measuring systemperformance using standard benchmarking techniques. The potential for livelock isalso a security problem, since it leaves a system open to a simple denial-of-serviceattack. For all three of these applications, our techniques have solved or mitigatedACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



220 � J. C. Mogul and K. K. Ramakrishnanthe problem, and we have shipped the solutions to customers. For example, anearlier implementation of this work was successfully deployed in the routers usedfor the NASDAQ �nancial network.The rest of this article concentrates on host-based routing and (to a lesser extent)network monitoring, since this simpli�es the context of the problem and allows easyperformance measurement.3. REQUIREMENTS FOR SCHEDULING NETWORK TASKSPerformance problems generally arise when a system is subjected to transient orlong-term input overload. Ideally, the communication subsystem could handle theworst-case input load without saturating, but cost considerations often preventus from building such powerful systems. Systems are usually sized to support aspeci�ed design-center load, and under overload the best we can ask for is controlledand graceful degradation.When an end-system is involved in processing considerable network tra�c, itsperformance depends critically on how its tasks are scheduled. The mechanisms andpolicies that schedule packet processing and other tasks should guarantee acceptablesystem throughput, reasonable latency and jitter (variance in delay), fair allocationof resources, and overall system stability, without imposing excessive overheads,especially when the system is overloaded.3.1 ThroughputWe can de�ne throughput as the rate at which the system delivers packets to theirultimate consumers. A consumer could be an application running on the receivinghost, or the host could be acting as a router and forwarding packets to consumerson other hosts. We expect the throughput of a well-designed system to keep upwith the o�ered load up to a point called the Maximum Loss Free Receive Rate(MLFRR; a similar term was �rst used by Ramakrishnan [1992]), and at higherloads throughput should not drop below this rate.Of course, useful throughput depends not just on successful reception of pack-ets; the system must also transmit packets. Because packet reception and packettransmission often compete for the same resources, under input overload condi-tions the scheduling subsystem must ensure that packet transmission continues atan adequate rate.3.2 Latency and JitterMany applications, such as distributed systems and interactive multimedia, oftendepend more on low-latency, low-jitter communications than on high throughput.Even during overload, we want to avoid long queues, which increases latency, andbursty scheduling, which increases jitter.3.3 Fair Allocation of ResourcesWhen a host is overloaded with incoming network packets, it must also continue toprocess other tasks, so as to keep the system responsive to management and controlrequests, and to allow applications to make use of the arriving packets. The schedul-ing subsystem must fairly allocate CPU resources among packet reception, packetACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



Eliminating Receive Livelock in an Interrupt-Driven Kernel � 221transmission, protocol processing, other I/O processing, system housekeeping, andapplication processing.3.4 Overall StabilityA host that behaves badly when overloaded can also harm other systems on thenetwork. Livelock in a router, for example, may cause the loss of control messages,or delay their processing. This can lead other routers to incorrectly infer linkfailure, causing incorrect routing information to propagate over the entire wide-areanetwork. Worse, loss or delay of control messages can lead to network instability,by causing positive feedback in the generation of control tra�c [Perlman 1983].3.5 Summary of RequirementsThe scheduling of network activity should guarantee:|High throughput for both input and output, and no loss of throughput duringoverload conditions.|Low latency and low jitter, even during overload.|Fair allocation of CPU and memory resources, both among networking tasks,and to non-networking tasks as well.The approach described in this article meets these requirements.4. INTERRUPT-DRIVEN SCHEDULING AND ITS CONSEQUENCESScheduling policies and mechanisms signi�cantly a�ect the throughput and latencyof a system under overload. In an interrupt-driven operating system, the interruptsubsystem must be viewed as a component of the scheduling system, since it has amajor role in determining what code runs when. We have observed that interrupt-driven systems have trouble meeting the requirements discussed in Section 3.In this section, we �rst describe the characteristics of an interrupt-driven system,and then identify three kinds of problems caused by network input overload ininterrupt-driven systems:|Receive livelocks under overload: delivered throughput drops to zero while theinput overload persists.|Increased latency for packet delivery or forwarding: the system delays the deliveryof one packet while it processes the interrupts for subsequent packets, possiblyof a burst.|Starvation of packet transmission: even if the CPU keeps up with the input load,strict priority assignments may prevent it from transmitting any packets.4.1 Description of an Interrupt-Driven SystemAn interrupt-driven system performs badly under network input overload becauseof the way in which it prioritizes the tasks executed as the result of network input.We begin by describing a typical operating system's structure for processing andprioritizing network tasks. We use the 4.2BSD [Le�er et al. 1989] model for our ex-ample, but we have observed that other operating systems, such as VMS, MS-DOS,and Windows NT, and even several Ethernet chips, have similar characteristics andhence similar problems. ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



222 � J. C. Mogul and K. K. RamakrishnanWhen a packet arrives, the network interface signals this event by interruptingthe CPU. Device interrupts normally have a �xed Interrupt Priority Level (IPL),and preempt all tasks running at a lower IPL; interrupts do not preempt tasksrunning at the same IPL. The interrupt causes entry into the associated networkdevice driver, which does some initial processing of the packet. In 4.2BSD, onlybu�er management and data-link layer processing happens at \device IPL." Thedevice driver then places the packet on a queue, and generates a software interruptto cause further processing of the packet. The software interrupt is taken at a lowerIPL, and so this protocol processing can be preempted by subsequent interrupts.(The system design avoids lengthy periods at high IPL, in order to reduce latencyfor handling certain other events, such as lower-priority device interrupts.)The queues between steps executed at di�erent IPLs provide some insulationagainst packet losses due to transient overloads, but typically they have �xed lengthlimits. When a packet should be queued but the queue is full, the system mustdrop the packet. The selection of proper queue limits, and thus the allocation ofbu�ering among layers in the system, is critical to good performance, but beyondthe scope of this article.Note that the operating system's scheduler does not participate in any of thisactivity, and in fact is entirely ignorant of it.As a consequence of this structure, a heavy load of incoming packets could gen-erate a high rate of interrupts at device IPL. Dispatching an interrupt is a costlyoperation, so to avoid this overhead, the network device driver attempts to batchinterrupts. That is, if packets arrive in a burst, the interrupt handler attemptsto process as many packets as possible before returning from the interrupt. Thisamortizes the cost of processing an interrupt over several packets.Even with batching, a system overloaded with input packets will spend most ofits time in the code that runs at device IPL. That is, the design gives absolutepriority to processing incoming packets. At the time that 4.2BSD was developed,in the early 1980s, the rationale for this was that network adapters had little bu�ermemory, and so if the system failed to move a received packet promptly into mainmemory, a subsequent packet might be lost. (This is still a problem with low-costinterfaces.) Thus, systems derived from 4.2BSD do minimal processing at deviceIPL, and give this processing priority over all other network tasks.Modern network adapters can receive many back-to-back packets without hostintervention, either through the use of copious bu�ering or highly autonomous DMAengines. This insulates the system from the network, and eliminates much of therationale for giving absolute priority to the �rst few steps of processing a receivedpacket.4.2 Receive LivelockIn an interrupt-driven system, receiver interrupts take priority over all other activ-ity. If packets arrive too fast, the system will spend all of its time processing receiverinterrupts. It will therefore have no resources left to support delivery of the arrivingpackets to applications (or, in the case of a router, to forwarding and transmittingthese packets). The useful throughput of the system will drop to zero.Following Ramakrishnan [1992], we refer to this condition as receive livelock: astate of the system where no useful progress is being made, because some necessaryACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



Eliminating Receive Livelock in an Interrupt-Driven Kernel � 223resource is entirely consumed with processing receiver interrupts. When the inputload drops su�ciently, the system leaves this state, and is again able to makeforward progress. This is not a deadlock state, from which the system would notrecover even when the input rate drops to zero.A system could behave in one of three ways as the input load increases. Inan ideal system, the delivered throughput always matches the o�ered load. In arealizable system, the delivered throughput keeps up with the o�ered load up tothe Maximum Loss Free Receive Rate (MLFRR), and then is relatively constantafter that. At loads above the MLFRR, the system is still making progress, butit is dropping some of the o�ered input; typically, packets are dropped at a queuebetween processing steps that occur at di�erent priorities.In a system prone to receive livelock, however, throughput decreases with in-creasing o�ered load, for input rates above the MLFRR. Receive livelock occurs atthe point where the throughput falls to zero. A livelocked system wastes all of thee�ort it puts into partially processing received packets, since they are all discarded.Receiver-interrupt batching complicates the situation slightly. By improving sys-tem e�ciency under heavy load, batching can increase the MLFRR. Batching canshift the livelock point but cannot, by itself, prevent livelock.In Section 6.2, we present measurements showing how livelock occurs in a prac-tical situation. Additional measurements, and a more detailed discussion of theproblem, are given in Ramakrishnan [1992].4.3 Receive Latency under OverloadAlthough interrupt-driven designs are normally thought of as a way to reducelatency, they can actually increase the latency of packet delivery. If a burst ofpackets arrives too rapidly, the system will do link-level processing of the entireburst before doing any higher-layer processing of the �rst packet, because link-levelprocessing is done at a higher priority. As a result, the �rst packet of the burst isnot delivered to the user until link-level processing has been completed for all thepackets in the burst. The latency to deliver the �rst packet in a burst is increasedalmost by the time it takes to receive the entire burst. If the burst is made up ofseveral independent NFS RPC requests, for example, this means that the server'sdisk sits idle when it could be doing useful work.To demonstrate this e�ect, we performed experiments using ULTRIX Version3.0 running on a DECstation 3100 (approximately 11.3 SPECmarks). ULTRIX,derived from 4.2BSD, closely follows the network design of that system. We useda logic analyzer to measure the time between the generation of an interrupt by theEthernet device (an AMD 7990 LANCE chip), signalling the complete receptionof a packet, and the packet's delivery to an application. We used the kernel'simplementation of a simple data-link layer protocol, rather than IP/TCP or asimilar protocol stack, but the steps performed by the kernel are substantially thesame:|link-level processing at device IPL, which includes copying the packet into kernelbu�ers (the interface does not support DMA)|further processing following a software interrupt, which includes locating theappropriate user process, and queuing the packet for delivery to this processACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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2.02 msecFig. 1. How interrupt-driven scheduling causes excess latency under overload.|�nally, awakening the user process, which then (in kernel mode) copies the re-ceived packet into its own bu�er.Figure 1 shows a time line for the completion of these processing stages, whenreceiving a burst of four minimum-size packets from the Ethernet. The systemstarts to copy the �rst packet into a kernel bu�er almost immediately after itarrives, but does not �nish copying the third packet until about 1.33 msec. later.Only after �nishing this does it schedule a software interrupt to dispatch the packetto the user process, and all of the packets are dispatched before the user process isawakened. It is the use of preemptive interrupt priorities that prevents completionof processing for the �rst packet until substantial processing has been done on theentire burst.We generated our bursts of Ethernet packets with an interpacket spacing of 108�sec. (this is not the minimum theoretical spacing, but we were limited by thepacket generator we used). The latency to deliver the �rst packet to the userapplication depended on the size of a burst: 1.23 msec. for a single-packet burst,1.54 msec. for a two-packet burst, 2.02 msec. for a four-packet burst, and 5.03msec. for a 16-packet burst. A plot of �rst-packet delivery latency versus burstsize (not shown, for reasons of space) reveals that the latency is nearly linear in theburst size, for a wide range of packet sizes.We will present a more detailed analysis of receive latency in Section 8, in thecontext of a somewhat di�erent system.4.4 Starvation of Transmits under OverloadIn most systems, the packet transmission process consists of selecting packets froman output queue, handing them to the interface, waiting until the interface has sentthe packet, and then releasing the associated bu�er.Packet transmission is often done at a lower priority than packet reception. Thispolicy is super�cially sound, because it minimizes the probability of packet losswhen a burst of arriving packets exceeds the available bu�er space. Reasonableoperation of higher-level protocols and applications, however, requires that transmitprocessing makes su�cient progress.When the system is overloaded for long periods, use of a �xed lower priorityfor transmission leads to reduced throughput, or even complete cessation of packetACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



Eliminating Receive Livelock in an Interrupt-Driven Kernel � 225transmission. Packets may be awaiting transmission, but the transmitting interfaceis idle. We call this transmit starvation.Transmit starvation may occur if the transmitter interrupts at a lower prioritythan the receiver; or if they interrupt at the same priority, but the receiver's eventsare processed �rst by the driver; or if transmission completions are detected bypolling, and the polling is done at a lower priority than receiver event processing.This e�ect has also been described previously [Ramakrishnan 1993].5. AVOIDING LIVELOCK THROUGH BETTER SCHEDULINGIn this section, we discuss several techniques to avoid receive livelocks. The tech-niques we discuss in this section include mechanisms to control the rate of incom-ing interrupts, polling-based mechanisms to ensure fair allocation of resources, andtechniques to avoid unnecessary preemption.5.1 Limiting the Interrupt Arrival RateWe can avoid or defer receive livelock by limiting the rate at which interrupts areimposed on the system. The system checks to see if interrupt processing is takingmore than its share of resources, and if so, disables interrupts temporarily.The system may infer impending livelock because it is discarding packets due toqueue over
ow, or because high-layer protocol processing or user-mode tasks aremaking no progress, or by measuring the fraction of CPU cycles used for packetprocessing. Once the system has invested enough work in an incoming packet tothe point where it is about to be queued, it makes more sense to process that packetto completion than to drop it and rescue a subsequently arriving packet from beingdropped at the receiving interface, a cycle that could repeat ad in�nitum.When the system is about to drop a received packet because an internal queueis full, this strongly suggests that it should disable input interrupts from that par-ticular interface. (It is not necessary to disable all system interrupts.) The hostcan then make progress on the packets already queued for higher-level processing,which has the side-e�ect of freeing bu�ers to use for subsequent received packets.Meanwhile, if the receiving interface has su�cient bu�ering of its own, additionalincoming packets may accumulate there for a while.We also need a trigger for reenabling input interrupts, to prevent unnecessarypacket loss. Interrupts may be reenabled when internal bu�er space becomes avail-able, or upon expiration of a timer.We may also want the system to guarantee some progress for user-level code. Thesystem can observe that, over some interval, it has spent too much time processingpacket input and output events, and temporarily disable interrupts to give higherprotocol layers and user processes time to run. On a processor with a �ne-grainedclock register, the packet-input code can record the clock value on entry, subtractthat from the clock value seen on exit, and keep a sum of the deltas. If this sum (ora running average) exceeds a speci�ed fraction of the total elapsed time, the kerneldisables input interrupts. (Digital's GIGAswitch system uses a similar mechanism[Souza et al. 1994].)On a system without a �ne-grained clock, one can crudely simulate this approachby sampling the CPU state on every clock interrupt (clock interrupts typicallypreempt device interrupt processing). If the system �nds itself in the midst ofACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



226 � J. C. Mogul and K. K. Ramakrishnanprocessing interrupts for a series of such samples, it can disable interrupts for a fewclock ticks.5.2 Use of PollingLimiting the interrupt rate prevents system saturation but might not guarantee pro-gress; the system must also fairly allocate packet-handling resources between inputand output processing, and between multiple interfaces. We can provide fairnessby carefully polling all sources of packet events, using a round-robin schedule.In a pure polling system, the scheduler would invoke the device driver to \listen"for incoming packets and for transmit completion events. This would control theamount of device-level processing, and could also fairly allocate resources amongevent sources, thus avoiding livelock. Simply polling at �xed intervals, however,adds unacceptable latency to packet reception and transmission.Polling designs and interrupt-driven designs di�er in their placement of policydecisions. When the behavior of tasks cannot be predicted, we rely on the schedulerand the interrupt system to dynamically allocate CPU resources. When tasks canbe expected to behave in a predictable manner, the tasks themselves are better ableto make the scheduling decisions, and polling depends on voluntary cooperationamong the tasks.Since a purely interrupt-driven system leads to livelock, and a purely pollingsystem adds unnecessary latency, we employ a hybrid design, in which the systempolls only when triggered by an interrupt, and interrupts happen only while pollingis suspended. During low loads, packet arrivals are unpredictable, and we useinterrupts to avoid latency. During high loads, we know that packets are arrivingat or near the system's saturation rate, so we use polling to ensure progress andfairness, and only reenable interrupts when no more work is pending.5.3 Avoiding PreemptionAs we showed in Section 4.2, receive livelock occurs because interrupt processingpreempts all other packet processing. We can solve this problem by making higher-level packet processing nonpreemptable. We observe that this can be done followingone of two general approaches: do (almost) everything at high IPL, or do (almost)nothing at high IPL.Following the �rst approach, one could modify the 4.2BSD design (see Section4.1) by eliminating the software interrupt, polling interfaces for events, and pro-cessing received packets to completion at device IPL. Because higher-level pro-cessing occurs at device IPL, it cannot be preempted by another packet arrival,and so we guarantee that livelock does not occur within the kernel's protocol stack.One would still need to use a rate-control mechanism to ensure progress by user-level applications.We used this �rst approach in an earlier prototype, where it did provide a suf-�cient solution to the livelock problem, but using IPL to prevent preemption hasseveral drawbacks. For example, it can interfere with assumptions made elsewherein the kernel about the IPL.In a system following the second approach, which we followed for the work de-scribed in this article, the interrupt handler runs only long enough to set a \serviceneeded" 
ag, and to schedule the polling thread if it is not already running. TheACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



Eliminating Receive Livelock in an Interrupt-Driven Kernel � 227polling thread runs at zero IPL, checking the 
ags to decide which devices needservice. Only when the polling thread is done does it reenable the device inter-rupt. The polling thread can be interrupted at most once by each device, andso it progresses at full speed without interference. Note that this does not re-quire fully nonpreemptable threads; we prevent livelock caused by interrupt-drivenpreemption by disabling the generation of interrupts, not by making the threadnonpreemptable.Either approach eliminates the need to queue packets between the device driverand the higher-level protocol software, although if the protocol stack must block,the incoming packet must be queued at a later point. (For example, this wouldhappen when the data segment is ready for delivery to a user process, or when anIP fragment is received and its companion fragments are not yet available.)5.4 Summary of TechniquesIn summary, we avoid livelock by:|Using interrupts only to initiate polling.|Using round-robin polling to fairly allocate resources among event sources.|Temporarily disabling input when feedback from a full queue, or a limit on CPUusage, indicates that other important tasks are pending.|Dropping packets early, rather than late, to avoid wasted work. Once we decideto receive a packet, we try to process it to completion.We maintain high performance by|Reenabling interrupts when no work is pending, to avoid polling overhead andto keep latency low.|Letting the receiving interface bu�er bursts, to avoid dropping packets.|Eliminating the IP input queue, and associated overhead.We observe, in passing, that ine�cient code tends to exacerbate receive livelock,by lowering the MLFRR of the system and hence increasing the likelihood thatlivelock will occur. Aggressive optimization, \fast-path" designs, and removal ofunnecessary steps all help to postpone arrival of livelock.6. LIVELOCK IN BSD-BASED ROUTERSIn this section, we consider the speci�c example of an IP packet router built usingDigital UNIX (formerly DEC OSF/1). We chose this application because routingperformance is easily measured. Also, since �rewalls typically use UNIX-basedrouters, they must be livelock-proof in order to prevent denial-of-service attacks.Our goals were to (1) obtain the highest possible maximum throughput; (2)maintain high throughput even when overloaded; (3) allocate su�cient CPU cyclesto user-mode tasks; (4) minimize latency; and (5) avoid degrading performance inother applications.6.1 Measurement MethodologyOur test con�guration consisted of a router-under-test connecting two otherwiseunloaded Ethernets. A source host generated IP/UDP packets at a variety of rates,ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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Fig. 2. Forwarding performance of unmodi�ed kernel.and sent them via the router to a destination address. (The destination host didnot exist; we fooled the router by inserting a phantom entry into its ARP table.)We measured router performance by counting the number of packets successfullyforwarded in a given period, yielding an average forwarding rate.The router-under-test was a DECstation 3000/300 Alpha-based system runningDigital UNIX V3.2, with a SPECint92 rating of 66.2. We chose the slowest availableAlpha host, to make the livelock problem more evident. The source host was aDECstation 3000/400, with a SPECint92 rating of 74.7. We slightly modi�ed itskernel to allow more e�cient generation of output packets, so that we could stressthe router-under-test as much as possible.In all the trials reported on here, the packet generator sent 10,000 UDP packetscarrying four bytes of data. This system does not generate a precisely paced streamof packets; the packet rates reported are averaged over several seconds, and theshort-term rates varied somewhat from the mean. We calculated the deliveredpacket rate by using the \netstat" program (on the router machine) to sample theoutput interface count (\Opkts") before and after each trial. We checked, using anetwork analyzer on the stub Ethernet, that this count exactly reports the numberof packets transmitted on the output interface.6.2 Measurements of an Unmodi�ed KernelWe started by measuring the performance of the unmodi�ed operating system,as shown in Figure 2. Each mark represents one trial. The �lled circles showkernel-based forwarding performance, and the open squares show performance usingthe screend program [Mogul 1989], used in some �rewalls to screen out unwantedpackets. This user-mode program does one system call per packet; the packet-forwarding path includes both kernel and user-mode code. In this case, screendwas con�gured to accept all packets.From these tests, it was clear that with screend running, the router su�ered frompoor overload behavior at rates above 2000 packets/sec., and complete livelock setin at about 6000 packets/sec. Even without screend, the router peaked at 4700packets/sec., and would probably livelock somewhat below the maximum Ethernetpacket rate of about 14,880 packets/second.ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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Fig. 3. IP forwarding path in 4.2BSD.6.3 Why Livelock Occurs in the 4.2BSD Model4.2BSD follows the model described in Section 4.1, and depicted in Figure 3. Thedevice driver runs at interrupt priority level (IPL) = SPLIMP, and the IP layerruns via a software interrupt at IPL = SPLNET, which is lower than SPLIMP.The queue between the driver and the IP code is named \ipintrq," and each outputinterface is bu�ered by a queue of its own. All queues have length limits; excesspackets are dropped. Device drivers in this system implement interrupt batching,so at high input rates very few interrupts are actually taken.Digital UNIX follows a similar model, with the IP layer running as a separatelyscheduled thread at IPL = 0, instead of as a software interrupt handler.It is now quite obvious why the system su�ers from receive livelock. Once theinput rate exceeds the rate at which the device driver can pull new packets out ofthe interface and add them to the IP input queue, the IP code never runs. Thus, itnever removes packets from its queue (ipintrq), which �lls up, and all subsequentreceived packets are dropped.The system's CPU resources are saturated because it discards each packet aftera lot of CPU time has been invested in it at elevated IPL. This is foolish; oncea packet has made its way through the device driver, it represents an investmentand should be processed to completion if at all possible. In a router, this meansthat the packet should be transmitted on the output interface. When the systemis overloaded, it should discard packets as early as possible (i.e., in the receivinginterface), so that discarded packets do not waste any resources.6.4 Fixing the Livelock ProblemWe solved the livelock problem by doing as much work as possible in a kernel thread,rather than in the interrupt handler, and by eliminating the IP input queue andits associated queue manipulations and software interrupt (or thread dispatch).11This is not such a radical idea; Van Jacobson had already used it as a way to improve end-systemTCP performance [Jacobson 1990].ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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(polled)Fig. 4. Modi�ed IP forwarding path, with polled functions.Once we decide to take a packet from the receiving interface, we try not to discardit later on, since this would represent wasted e�ort.We also try to carefully \schedule" the work done in this thread. It is probablynot possible to use the system's real scheduler to control the handling of eachpacket, so we instead had this thread use a polling technique to e�ciently simulateround-robin scheduling of packet processing. The polling thread uses additionalheuristics to help meet our performance goals (see Section 6.6).In the new system, the interrupt handler for an interface driver does almost nowork at all. Instead, it simply schedules the polling thread (if it has not alreadybeen scheduled), recording its need for packet processing, and then returns fromthe interrupt. It does not set the device's interrupt-enable 
ag, so the system willnot be distracted with additional interrupts until the polling thread has processedall of the pending packets. The interrupt-enable 
ag will be set later, once there isno further work pending for this interface.At boot time, the modi�ed interface drivers register themselves with the pollingsystem, providing callback procedures for handling received and transmitted pack-ets, and for enabling interrupts. When the polling thread is scheduled, it checks allof the registered devices to see if they have requested processing, and invokes theappropriate callback procedures to do what the interrupt handler would have donein the unmodi�ed kernel.The received-packet callback procedures call the IP input processing routine dir-ectly, rather than placing received packets on a queue for later processing; thismeans that any packet accepted from the interface is processed as far as possible(e.g., to the output interface queue for forwarding, or to a queue for delivery to aprocess). If the system falls behind, the interface's input bu�er will soak up pack-ets for a while, and any excess packets will be dropped by the interface before thesystem has wasted any resources on it.Figure 4 depicts the processing 
ow, for forwarded packets, in the modi�ed ker-nel (compare it to the unmodi�ed kernel, depicted in Figure 3.) The original,purely interrupt-driven mechanism is still available for unmodi�ed network inter-face drivers (shown in gray), but modi�ed drivers use the polling mechanism. Here,ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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Fig. 5. Forwarding performance of modi�ed kernel, without using screend.the \modi�ed receive interrupt handler" and \modi�ed transmit interrupt hand-ler" simply alert the polling thread to the availability of work. All of the actualpacket processing is done in the \received packet processing" and \transmit packetprocessing" routines, invoked at low IPL by the polling thread. (The polling mech-anism itself is not shown in this �gure.) The modi�ed path does not use theIP input queue at all, although it remains available for use by unmodi�ed devicedrivers. We retain the queue between the IP forwarding layer and the transmitpacket processing code, since an attempt to transmit a packet might block if theoutput interface is busy.The polling thread passes the callback procedures a quota on the number ofpackets they are allowed to handle. Once a callback has used up its quota, itmust return to the polling thread. This allows the thread to round-robin betweenmultiple interfaces, and between input and output handling on any given interface,to prevent a single input stream from monopolizing the CPU. After all the packetspending at an interface have been handled, the polling thread also invokes thedriver's interrupt-enable callback, so that a subsequent packet event will cause aninterrupt.6.5 Results and AnalysisFigures 5 summarizes the results of our changes, when screend is not used. Severaldi�erent kernel con�gurations are shown, using di�erent mark symbols on the graph.The modi�ed kernel (shown with square marks) slightly improves the MLFRR, andavoids livelock at higher input rates.The modi�ed kernel can be con�gured to act as if it were an unmodi�ed system(shown with open circles), although this seems to perform slightly worse than anactual unmodi�ed system (�lled circles). The reasons are not clear, but may involveslightly longer code paths, di�erent compilers, or unfortunate changes in instructioncache con
icts.6.6 Scheduling HeuristicsFigure 5 shows that if the polling thread places no quota on the number of packetsthat a callback procedure can handle, when the input rate exceeds the MLFRRACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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Fig. 6. Forwarding performance of modi�ed kernel, with screend.the total forwarding throughput drops almost to zero (shown with diamonds in the�gure). This livelock occurs because although the packets are no longer discardedat the IP input queue, they are still piling up (and being discarded) at the queuefor the output interface. This queue is unavoidable, since there is no guarantee thatthe output interface runs as fast as the input interface.Why does the system fail to drain the output queue? If packets arrive too fast,the input-handling callback never �nishes its job. This means that the pollingthread never gets to call the output-handling callback for the transmitting interface,which prevents the release of transmitter bu�er descriptors for use in further packettransmissions. This is similar to the transmit starvation condition identi�ed inSection 4.4.The result for the modi�ed kernel, when no quota is imposed, is actually worsethan that for the unmodi�ed system, because in the modi�ed system packets arebeing discarded for lack of space on the output queue, rather than on the IP inputqueue. The unmodi�ed kernel does less work per discarded packet, and thereforeoccasionally discards them fast enough to catch up with a burst of input packets.6.6.1 Feedback from Full Queues. How does the modi�ed system perform whenthe screend program is used? Figure 6 compares the performance of the unmodi�edkernel (�lled circles) and several modi�ed kernels.With the kernel modi�ed as described so far (squares), the system performs aboutas badly as the unmodi�ed kernel. The problem is that, because screend runs in usermode, the kernel must queue packets for delivery to screend. The kernel portion ofthe screend implementation includes a special queue for these packets. When thesystem is overloaded, this queue �lls up, and packets are dropped. screend nevergets a chance to run to drain this queue, because the system devotes its cycles tohandling input packets.To resolve this problem, we detect when the screening queue becomes full andinhibit further input processing (and input interrupts) until more queue space isavailable. The result is shown with the gray square marks in Figure 6: no live-lock, and much improved peak throughput (the MLFRR increases from under 2000packets/sec. to over 2900 packets/sec.) Feedback from the queue state means thatthe system properly allocates CPU resources to move packets all the way throughACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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Fig. 7. E�ect of packet-count quota on performance, no screend.the system, instead of dropping them at an intermediate point.In these experiments, the polling quota was 10 packets, the screening queue waslimited to 32 packets, and we inhibited input processing when the queue was 75%full. Input processing is reenabled when the screening queue becomes 25% full. Wechose these high and low water marks arbitrarily, and some tuning might help. Wealso set a timeout (arbitrarily chosen as one clock tick, or about 1 msec.) afterwhich input is reenabled, in case the screend program is hung, so that packets forother consumers are not dropped inde�nitely.The same queue-state feedback technique could be applied to other queues in thesystem, such as interface output queues, packet �lter queues (for use in networkmonitoring) [Mogul 1990; Mogul et al. 1987], etc. The feedback policies for thesequeues would be more complex, since it might be di�cult to determine if inputprocessing load was actually preventing progress at these queues. Because thescreend program is typically run as the only application on a system, however, afull screening queue is an unequivocal signal that too many packets are arriving.6.6.2 Choice of Packet-Count Quota. To avoid livelock in the non-screend con-�guration, we had to set a quota on the number of packets processed per callback,so we investigated how system throughput changes as the quota is varied. Figure7 shows the results; smaller quotas work better. As the quota increases, livelockbecomes more of a problem.Since the optimal quota setting probably varies depending on the speci�c hard-ware con�guration, we took a closer look at the sensitivity of the non-screend resultsto the quota setting. Figure 8 shows that, as we varied the quota from 2 to 20 pack-ets, both the peak forwarding rate (over all input rates tested) and the asymptoticforwarding rate (for the highest input rate tested) reach their maxima at a quota of8 packets. Setting the quota above this point quickly leads to livelock, as the inputstream monopolizes the CPU. Setting the quota below this point avoids livelock,but does reduce peak performance, because the polling overhead is amortized overa smaller number of packets. Figure 8 suggests that, when setting the quota, oneshould err toward high values if peak performance is the primary goal, but towardlow values if avoiding livelock is more important.When screend is used, however, the queue-state feedback mechanism preventsACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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Fig. 8. Sensitivity of packet-count quota, no screend.
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Fig. 9. E�ect of packet-count quota on performance, with screend.livelock, and small quotas slightly reduce maximum throughput (by about 5%).We believe that by processing more packets per callback, the system amortizes thecost of polling more e�ectively, but increasing the quota could also increase worst-case per-packet latency. Once the quota is large enough to �ll the screening queuewith a burst of packets, the feedback mechanism probably hides any potential forimprovement. Figure 9 shows the results when the screend process is in use.In summary, tests both with and without screend suggest that a quota of aboutseven or eight packets yields stable and near-optimum behavior, for the hardwarecon�guration tested. For other CPUs and network interfaces, the proper value maydi�er, so this parameter should be tunable. Alternatively, it might be possible touse a feedback-based control system to dynamically set the quota to a point justbelow where livelock sets in.7. GUARANTEEING PROGRESS FOR USER-LEVEL PROCESSESThe polling and queue-state feedback mechanisms described in Section 6.4 canensure that all necessary phases of packet processing make progress, even duringinput overload. They are indi�erent to the needs of other activities, however, souser-level processes could still be starved for CPU cycles. This makes the system'sACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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threshold  100 %Fig. 10. User-mode CPU time available using cycle-limit mechanism.user interface unresponsive and interferes with housekeeping tasks (such as routingtable maintenance). We veri�ed this e�ect by running a compute-bound process onour modi�ed router, and then 
ooding the router with minimum-sized packets tobe forwarded. The router forwarded the packets at the full rate (i.e., as if no user-mode process were consuming resources), but the user process made no measurableprogress.Since the root problem is that the packet-input-handling subsystem takes toomuch of the CPU, we should be able to ameliorate that by simply measuring theamount of CPU time spent handling received packets, and disabling input handlingif this exceeds a threshold.The Alpha architecture, on which we did these experiments, includes a high-resolution low-overhead counter register. This register counts every instructioncycle (in current implementations) and can be read in one instruction, without anydata cache misses. Other modern architectures support similar counters.We measure the CPU usage over a period de�ned as several clock ticks (10msec., in our current implementation, chosen arbitrarily to match the scheduler'squantum). Once each period, a timer function clears a running total of CPU cyclesused in the packet-processing code. Each time our modi�ed kernel begins its pollingloop, it reads the Alpha's cycle counter register, and reads it again at the end ofthe loop, to measure the number of cycles spent handling input and output packetsduring the loop. (The quota mechanism ensures that this interval is relativelyshort.) This number is then added to the running total, and if this total is abovea threshold, input handling is immediately inhibited. At the end of the currentperiod, a timer reenables input handling. Execution of the system's idle threadalso reenables input interrupts and clears the running total.By adjusting the threshold to be a fraction of the total number of cycles in aperiod, one can control fairly precisely the amount of CPU time spent processingpackets. We have not yet implemented a programming interface for this control; forour tests, we simply patched a kernel global variable representing the percentageallocated to network processing, and the kernel automatically translates this to anumber of cycles.Figure 10 shows how much CPU time is available to a compute-bound user pro-ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



236 � J. C. Mogul and K. K. Ramakrishnancess, for several settings of the cycle threshold and various input rates. The curvesshow fairly stable behavior as the input rate increases, but the user process doesnot get as much CPU time as the threshold setting would imply.Part of the discrepancy comes from system overhead; even with no input load,the user process gets about 94% of the CPU cycles; the other 6% probably goesto system background processes and some kernel overheads. Also, the cycle-limitmechanism inhibits packet input processing but not output processing. At higherinput rates, before input is inhibited, the output queue �lls enough to soak upadditional CPU cycles.Measurement error could cause some additional discrepancy. The cycle thresholdis checked only after handling a burst of input packets (for these experiments,the callback quota was �ve packets). With the system forwarding about 5000packets/sec., handling a burst of �ve packets takes about 1 msec., or about 10% ofthe threshold-checking period.The initial dips in the curves for the 50% and 75% thresholds probably re
ectthe cost of handling the actual interrupts; these cycles are not counted against thethreshold, and so the usage-limiting mechanism fails to realize that user-level code isbeing short-changed. At input rates below saturation, each incoming packet may behandled fast enough that no interrupt batching occurs, and so a signi�cant numberof cycles are spent in the interrupt-handling path. As the input rate increases, thereceiving interface spends less time with interrupts enabled, and so fewer cycles arespent in the interrupt-handling code.With a cycle limit imposed on packet processing, the system is subjectively farmore responsive, even during heavy input overload. This improvement, however, ismostly apparent for local users; any network-based interaction, such as Telnet, stillsu�ers because many packets are being dropped.7.1 Performance of End-System Transport ProtocolsThe changes we made to the kernel potentially a�ect the performance of end-systemtransport protocols, such as TCP and the UDP/RPC/XDR/NFS stack. Since wehave not yet applied our modi�cations to a high-speed network interface driver,such as one for FDDI, we cannot yet measure this e�ect. (The test system caneasily saturate an Ethernet, so measuring TCP throughput over Ethernet shows noe�ect.)The technique of processing a received packet directly from the device driverto the TCP layer, without placing the packet on an IP-level queue, was used byJacobson [1990] speci�cally to improve TCP performance. It should reduce the costof receiving a packet, by avoiding the queue operations and any associated locking;it also should improve the latency of kernel-to-kernel interactions (such as TCPacknowledgments and NFS RPCs). While we adopted this technique to help avoidlivelock, we also obtain its bene�ts in improved transport performance.The technique of polling the interfaces should not reduce end-system perform-ance, because it is done primarily during input overload. (Some implementationsuse polling to avoid transmit interrupts altogether [Macklem 1991].) During over-load, the unmodi�ed system would not make any progress on applications or trans-port protocols; the use of polling, queue-state feedback, and CPU cycle limits shouldgive the modi�ed system a chance to make at least some progress.ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



Eliminating Receive Livelock in an Interrupt-Driven Kernel � 237Although TCP processing can be done in the same thread as the lower levels of thestack, NFS server implementations require separate threads of control, because aserver may block waiting for disk I/O. Traditional NFS implementations, especiallyon servers, su�ered badly from livelock because during overload the NFS threadsmay never get a chance to run. With queue-state feedback from the NFS server'sinput queue, however, we should be able to avoid much of this problem. One couldalso use the CPU cycle-limit mechanism to reserve some resources for the NFSthreads, although it might be di�cult to �nd the ideal allocation.8. MEASUREMENTS USING TRACES OF KERNEL EXECUTIONAlthough measurements showing the performance of a system under various loadsenable one to compare the ultimate bene�ts of several approaches, these numbers donot provide a deep understanding of the internal behavior of an operating system.We obtained traces of kernel execution to discover how the kernel is spending itstime, and to measure the latency for several paths.These traces expose, in detail, how our modi�cations a�ect the delivery latency ofsingle packets (Section 8.1) and of bursts of several packets (Section 8.2). It wouldbe quite di�cult to measure these latencies without such traces, since they a�ectaspects of system behavior that are not directly visible to user-mode software.The traces show that our modi�cations do indeed improve the delivery latencyboth for single packets, and for the �rst packet of a burst, and verify that themodi�cations do not add overhead to the packet delivery path. The traces alsoreveal a subtle design problem, which slightly delays the delivery of later packetsin the same burst. Because the traces can show the kernel behavior in great detail,they also give speci�c guidance on how to prevent the additional delay.To obtain these traces, we used ATOM, an extremely 
exible mechanism forinstrumenting software [Chen and Eustace 1995; Eustace and Srivastava 1995;Srivastava and Eustace 1994]. ATOM takes a fully linked binary program (evena Digital UNIX kernel) as input, and produces an instrumented binary as out-put. One also supplies to ATOM a module describing which points in the code toinstrument, and a module containing analysis routines to execute at run-time.Because ATOM allows the insertion of instrumentation at carefully chosen pointsin the kernel, it is possible to trace kernel paths without adding much overhead atall. We did the traces on a DECstation 3000/300, a relatively slow Alpha system.On this system, tracing appeared to add about 1.5 �sec. per call or return. Wedid some trials in which almost all kernel procedures were traced, and others inwhich only a few were traced. The former trials provided insight into the precisecode paths involved; the latter trials allowed us to obtain relatively accurate timinginformation.8.1 Traces of Single-Packet ActivityWe started by instrumenting almost all kernel procedures, except for a few low-level procedures that ATOM cannot currently trace and a small set of short butfrequently invoked auxiliary procedures. Tables I and II brie
y describe the pro-cedures that appear in these traces.We ran traces while using the system to forward a single minimum-length IP/UDPpacket and extracted the relevant sequence of events. We could then plot these asACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



238 � J. C. Mogul and K. K. RamakrishnanTable I. Description of Important Procedures Shown in Timeline TracesProcedure DescriptionThread Schedulingthread_wakeup_prim Used by thread scheduler to unblock a waiting thread.thread_run Switches between running threads.assert_wait_mesg_head Used by a thread to block on an event.netisr_input Noti�es scheduler that the network software interrupt service routineshould be running.Polling Facilitylanpoll_isr* Handler for software interrupt; polls devices with servicerequirements.lanpoll_intsched* Informs polling facility that an interrupt requires service.LANCE (Ethernet) Driverlnintr Interrupt entry point for LANCE driver.lnrint, lntint Original (non-polling) receiver and transmitter interrupt servicefunctions.lnrintpoll*, lntintpoll* New (for polling) receiver and transmitter interrupt service functions.lnintena* Called to reenable LANCE interrupts.lnread Converts received packet bu�er to mbuf chain.lnoutput, lnstart Initiates packet transmission.lnput Converts outgoing mbuf chain to packet bu�er.Ethernet Layerether_input Parses MAC-level header of received packet.ether_output Adds MAC-level header to outgoing packet.IP Layeripintr Software interrupt handler for IP packet input.ipinput Parses IP header and dispatches received IP packet.ip_output Creates IP header for outgoing packet.ip_forward Forwards packets when host acts as a router.Clock Interruptshardclock, clock_tick Periodic (1024Hz) clock interrupt handler*New routines added to support polling.timelines showing how procedure calls and returns nest, using the relative \stacklevel" to display the nesting. (Where the actual call stack includes uninstrumentedprocedures, the plotted stack level does not include calls through these procedures.)Figure 11 shows a timeline for the modi�ed kernel with polling disabled, whichshould approximate the behavior of an unmodi�ed kernel. Figure 12 shows atimeline for the kernel with polling enabled. Each call is marked with the name ofthe procedure and the time at which the call was made, in microseconds since thestart of the timeline. Returns are not individually marked, but one may deducethem from the decreases in stack level. Interrupts appear as if they were normalprocedure calls.In each case, we ran a rapid series of trials and selected one timeline in which noclock interrupts appear. To reduce the e�ects of cache misses, we never selected the�rst trial of a series. Even so, the times shown in these timelines should be treatedas illustrative, but not necessarily typical. Also remember that instrumentationoverhead adds several hundred microseconds to the total elapsed time (about 1.5�sec. for each instrumented call or return). Finally, note that these tests wereperformed on an unusually slow implementation of the Alpha architecture.In Figure 11, with polling disabled, we see the following interesting events (markedACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



Eliminating Receive Livelock in an Interrupt-Driven Kernel � 239Table II. Description of Boring Procedures Shown in Timeline TracesProcedure Descriptionthread_setrun, Thread scheduling and memory managementthread_continue,thread_block,switch_context,pmap_activate,get_thread_highmalloc, Memory allocationfreem_leadingspace, Mbuf manipulationm_freem,m_free,m_copymlninitdesc, LANCE (Ethernet) driverlngetarpresolve_local ARP layerip_forwardscreen, IP layerin_canforward,in_broadcast,gw_forwardscreenbzero, Bulk memory operationsbcopywith dots on the timelines):0 �sec. A packet has arrived, and lnintr() is called to begin handling theinterrupt from the receiving LANCE Ethernet chip. (Several micro-seconds have passed between interrupt assertion and the invocationof lnintr().)19 �sec. lnrint() is called to handle a received-packet interrupt.29 �sec. lnrint() calls lnread() to begin packet processing, which includes copy-ing the packet to an mbuf structure.77 �sec. lnread() calls ether_input() to queue the received packet on the ipintrqueue; ether_input() then calls netisr_input() to schedule a softwareinterrupt.142 �sec. lnintr() �nishes its execution at device IPL.191 �sec. After some thread-switching, ipinput() is invoked as a software inter-rupt.264 �sec. The IP-layer processing has determined that this packet should be for-warded, has chosen a next-hop destination, and now calls ip_output()to send the packet along.327 �sec. The LANCE driver has decided to send the packet, and calls lnput()to hand the bu�er chain to the device.444 �sec. IP-layer processing is complete, and the software interrupt handlerexits.522 �sec. The packet has been transmitted and the output interface has inter-rupted, causing a call to lnintr().544 �sec. lntint() is called to handle the transmit interrupt.ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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Fig. 11. Timeline forwarding a single packet, polling disabled.633 �sec. lntint() exits, completing all activity related to this packet.In Figure 12, with polling enabled, we see a slightly di�erent sequence of events:0 �sec. A packet has arrived, and again lnintr() is called to begin handlingthe interrupt from the receiving LANCE chip.21 �sec. lanpoll_intsched() is called to schedule a poll for this event.53 �sec. lnintr() �nishes its execution at device IPL. At this point, interruptsfrom this interface are still disabled, and the CPU is entirely underthe control of the polling mechanism.97 �sec. After some thread-switching, lanpoll_isr() is called as a software in-terrupt handler, and begins its polling loop.112 �sec. lnread() is called from lnrintpoll().160 �sec. ether_input() determines that this is an IP packet, and does not placeit on a queue.166 �sec. ipinput() is called directly from ether_input().235 �sec. The IP-layer processing calls ip_output() to send the packet along.294 �sec. The LANCE driver calls lnput() to hand the bu�er chain to thedevice.ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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Fig. 12. Timeline forwarding a single packet, polling enabled.407 �sec. IP-layer processing is complete, and control returns to the pollingloop.430 �sec. lanpoll_isr() calls lnintena() to reenable interrupts from this device.454 �sec. The packet has been transmitted and the output interface has in-terrupted, causing a call to lnintr(), which requests service for thisevent.492 �sec. lanpoll_isr() is called without any thread-switching overhead, sincethis is still the current thread.544 �sec. lntintpoll() is called to handle the transmit event.586 �sec. lanpoll_isr() calls lnintena() to reenable interrupts from this device.597 �sec. lanpoll_isr() exits, completing all activity related to this packet.From Figures 11 and 12, one might conclude that with polling enabled, thekernel saves about 30 �sec., mostly between the initial interrupt and the invocationof ipinput(). It is dangerous to base timing comparisons on a single pair of traces,and the instrumentation overhead confuses the situation somewhat. Therefore, webuilt another kernel just instrumenting the calls to lnintr() and ipinput(), and thenran a series of trials in order to obtain a statistically useful sample of the latencyACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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Fig. 13. Distribution of latencies from lnintr() to ipinput().between these two points in the code. Each trial resulted in at least 10,000 packetreceptions, almost all of which were short ICMP Echo packets.The resulting distributions are shown in Figure 13. The medians are markedwith dots; the use of polling seems to reduce the median latency by about 13 �sec.Polling also seems to reduce the latency variance somewhat. Note that the non-polling case includes the instrumentation overhead for one procedure return (fromlnintr()) that is not included in the other case. The non-polling kernel also includesan extra \if" statement and an extra procedure call that were not present in theunmodi�ed kernel, but these should not account for much time.In summary, we believe that the polling kernel, on this hardware, avoids about10 �sec. of work per packet, probably because it does not move each packet ontoand o� of the ipintr queue. This is reassuring, since it relieves the concern that thepolling mechanism could actually add overhead to the packet reception path.8.2 Traces of Packet BurstsIn Section 4.3, we discussed how the unmodi�ed kernel added extra latency to theprocessing of packets received in bursts. Figure 1 showed measurements of thise�ect on an ULTRIX kernel. With the ATOM tools, we can repeat this kind ofmeasurement using our current test system. However, since ATOM cannot directlymeasure the assertion of the hardware interrupt signal, we do not include the ker-nel's initial interrupt latency. We believe this missing time amounts to less than 10microseconds.Figure 14 shows traced timelines for the both the polling and non-polling kernelsforwarding a burst of three short packets. To reduce the clutter in this trace,we instrumented only the most interesting procedures, and omitted most of theprocedure labels.Both traces start with a call to lnintr(). In the non-polling trace (dotted line), the�rst packet is delivered to the output interface by lnput() 462 �sec. later (markedwith a gray square). In the polling trace (solid line), the �rst call to lnput() occursafter just 366 �sec. (solid square), or almost 100 �sec. sooner. Some part of this(perhaps 30 microseconds) comes from additional instrumentation overhead for thenon-polling kernel. The di�erence may also be a�ected, in either direction, by someACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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Fig. 14. Three-packet burst latency.variation in the number of cache misses, although the trials were run repeatedly inorder to warm up the caches. We also carefully selected traces that included as fewclock interrupts as possible; each trace in Figure 14 contains one clock interrupt,marked with a diamond. After accounting for these sources of potential error, westill see a signi�cantly lower initial forwarding latency in the polling kernel.We expect, as in the experiments described in Section 4.3, that the �rst-packetdelivery latency for the non-polling kernel will increase with burst size; the �rst-packet latency for the polling kernel should be independent of burst size.While the polling kernel delivers the �rst packet much sooner, the non-pollingkernel manages to deliver the second and third packets at 682 �sec. and 949 �sec.,respectively, while the polling kernel waits to deliver its second and third packetsuntil 898 and 978 �sec.The cause for this discrepancy comes from an assumption in the 4.2BSD designthat until the transmitter interrupts, no new packets should be added to its outputbu�er. Until the interrupt is serviced, the interface is marked \active," whichcauses the upper-layer code to leave it alone. The non-polling kernel services the�rst transmitter interrupt (at 590 �sec.) immediately, which allows it to restart thetransmitter as soon as the second packet is ready for output. The polling kernelreceives the transmit interrupt sooner (at 534 �sec.) but because the polling threadis still busy with the pending input packets, it fails to service the interrupt and soleaves the interface marked \active."If we were to change the code to queue additional output packets even while theinterface was active, the polling kernel would deliver those packets shortly afterwhere it now calls ether_output(), at 628 �sec. and 775 �sec., respectively (solidcircles). The corresponding points on the non-polling trace are marked with graycircles; they come at essentially the same relative times, after correcting for tracingoverhead.We believe that this simple change would therefore eliminate the excess latency,although it would add some per-packet overhead. The primary cause of this over-head is that starting packet transmissions more often could reduce the mean numberof packets sent in one invocation of the driver's output code, which decreases theACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



244 � J. C. Mogul and K. K. Ramakrishnanchances for amortizing the costs of device interaction over several packets. Deviceinteraction is expensive, in part because it requires non-cachable loads and stores.Another result of starting transmissions more often is that, when the output linkis not saturated, this could increase the rate of transmitter interrupts (it shouldnot a�ect the number of interrupts when the output link is saturated). Theseoverheads could reduce the peak forwarding rate of the system, although withoutleading to livelock. It may be necessary to choose between optimizing throughputand optimizing latency.The polling kernel also spends a little more time handling transmitter interruptsthan the non-polling kernel, because after all three packets of the burst have beenfully processed, the polling kernel still schedules the polling mechanism to see ifanything else needs to be done. This does not add extra overhead during conditionsof input overload, because then the polling mechanism would have useful work todo. However, at lower input rates it does rob cycles from other system tasks. Webelieve that there are several possible solutions to this problem, including di�erentinterrupt-generation schemes in the interface hardware, or some form of \clockedinterrupts" [Smith and Traw 1993; Traw and Smith 1993].8.2.1 Implications for Other Applications. Although our changes improve end-to-end latency for the �rst packet in a burst of forwarded packets, packet forwardingis an unusual application because almost all of the work can be done withoutblocking. Most other applications, whether in-kernel (such as NFS service), oruser-mode, require received packets to be queued for processing by another thread.Do our changes improve latency for these applications?We note that as long as the polling thread has complete control of the CPU re-sources, nothing else can happen. (Kernel threads in Digital UNIX are preemptablewith �xed priorities, and the polling thread runs at a priority above those of allconsumers of network packets.) In particular, no other thread can start processingthe �rst packet of a burst. We can see two ways to avoid this problem:|Multiprocessing: if the number of polling threads is smaller than the number ofCPUs, at least some CPU resources will be available to �nish processing earlypackets while the polling thread (or threads) continues to receive later packets.|CPU-time limits: in Section 7 we described how our polling mechanism can set alimit on the fraction of CPU time spent in the polling thread. We implementedthis by disabling polling after the thread has used m msec. out of an n-msec.period. This has the side-e�ect of limiting �rst-packet latency (as seen by thenext consumer after the polling thread) to approximately m msec., unless theburst starts while polling is inhibited because of overload.Neither of these completely solves the problem, but at least the polling mechan-ism provides these partial solutions; in a purely interrupt-driven kernel, user-modeapplication might have to wait for an unbounded interval to receive the �rst packet.9. AVOIDING LIVELOCK IN A PROMISCUOUS NETWORK MONITORLAN-monitoring applications typically require the host computer to place its net-work interface(s) into \promiscuous mode," receiving all packets on the LAN, notjust those addressed to the host itself. While a modern workstation can easilyACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



Eliminating Receive Livelock in an Interrupt-Driven Kernel � 245handle the full large-packet data rate of a high-speed LAN, if the LAN is 
oodedwith small packets, even fast hosts might not keep up. For example, an FDDI LANcan carry up to 227,000 packets per second. At that rate, a host has about 4.4�sec. to process each packet.The tcpdump application obtains packets from the kernel using the packet �lterpseudo-device driver [Mogul et al. 1987]. Packet �ltering (the selection of which re-ceived packets to hand to tcpdump) is done in the received-packet interrupt handlerthread, and the resulting packets are put on a queue for delivery to the application.During overload conditions, the kernel discards packets because the application hasno chance to drain this queue.While the behavior of a system running tcpdump is fairly similar to that of onerunning screend, we include a brief discussion of how our modi�cations a�ect tcp-dump because we have found that livelock is more likely to arise in this applicationthan for packet routing. Many sources of packet 
ows, especially TCP senders,do react to packets lost at a congested router by reducing their transmission rate.But a network monitor is passive by de�nition, and so we cannot expect packetsources to slow down when a passive monitor is overloaded. In fact, one of themost important uses of a network monitor is to locate the cause of an anomalousnetwork overload; a livelocked monitor would be worthless here.Note that tcpdump normally only looks at the packet headers, and so requestsjust the �rst 68 bytes of each packet. Since the kernel does not touch the remainingbytes of the packet, tcpdump throughput is nearly independent of packet size; itsspeed depends on per-packet, not per-byte, overheads.We modi�ed our polling kernel to implement queue-state feedback (see Section6.4) from the packet �lter queue. For the measurements described here, the queuecan contain at most 32 packets. Whenever the queue has room for fewer than eightadditional packets, we disable polling. We also set a one-millisecond timeout, afterwhich polling is reenabled. There is no direct mechanism to reenable polling whenmore queue space has been made available, although perhaps there should be.We then tested the network-monitoring performance of the modi�ed kernel. Weset up a relatively slow system (a DECstation 3000/300) as the network monitor,and a faster system (a DECstation 3000/400) as a packet generator. The generatorsent streams of packets to a third host on the same Ethernet, and tcpdump onthe network monitor attempted to capture all of them, �ltering on the UDP portnumber. For each trial, we sent between 10,000 and 30,000 packets at various rates,and measured the number of packets received by the monitor.In all of these trials, we found that very few packets were dropped at the receivinginterface. This means that almost all losses happened because the packet �lterqueue was full, not because the kernel failed to service the interface rapidly enough.Figure 15 shows the results for all of our tcpdump trials.In our �rst set of trials, we con�gured tcpdump to simply copy the packet headersto the null device, /dev/null, instead of regular disk �le. This should reduce theper-packet overhead and so increase the MLFRR.The use of queue-state feedback clearly results in much better peak packet captureperformance. It is tempting to infer that the use of feedback also improves overloadbehavior, but the rates measured in the /dev/null trials do not quite reach thesaturation point, and so provide no direct evidence about performance above thatACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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Fig. 15. tcpdump capture rate, all trials shown.rate.Note that at rates above the MLFRR of the no-feedback system, even withqueue-state feedback the system does lose some packets. (The gray dashed lineshows the performance of a hypothetical loss-free system.) We attribute this to thenecessarily �nite size of the packet �lter queue: even though queue-state feedbackinhibits input processing when the queue becomes full, the one-millisecond timeouthappens before tcpdump has drained much of the queue, and so the kernel has noplace to put the next batch of packets.The results for the no-feedback kernel show a noisy relationship between inputand output rates, above the MLFRR. This is because the packet generator is arelatively bursty source, and the mean burst size changes for di�erent long-termgenerated rates. When the mean burst size is large, the network monitor processesmore packets per interrupt, thus using fewer CPU cycles and leaving more for thetcpdump application.We also ran trials with tcpdump writing the received packet headers to a disk �le.This added just enough per-packet overhead to allow us to saturate the system,even with queue-state feedback, at an input rate of about 9000 packets/sec. (anda capture rate of about 7700 packets/sec.). Below the saturation point, the extraoverhead of writing headers to the disk has only a small e�ect on capture rate.10. RELATED WORKPolling mechanisms have been used before in UNIX-based systems, both in networkcode and in other contexts. Whereas we have used polling to provide fairness andguaranteed progress, the previous applications of polling were intended to reducethe overhead associated with interrupt service. This does reduce the chances ofsystem overload (for a given input rate), but does not prevent livelock.Traw and Smith [Smith and Traw 1993; Traw and Smith 1993] describe the useof \clocked interrupts": periodic polling to learn of arriving packets without theoverhead of per-packet interrupts. They point out that it is hard to choose theproper polling frequency: too high, and the system spends all its time polling; toolow, and the receive latency soars. Their analysis [Smith and Traw 1993] seemsto ignore the use of interrupt batching to reduce the interrupt-service overhead;ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



Eliminating Receive Livelock in an Interrupt-Driven Kernel � 247however, they do allude to the possibility of using a scheme in which an interruptprompts polling for other events.The 4.3BSD operating system [Le�er et al. 1989] apparently used a periodicpolling technique to process received characters from an eight-port terminal inter-face, if the recent input rate increased above a certain threshold. The intent seemsto have been to avoid losing input characters (the device had little bu�ering avail-able) but one could view this as a sort of livelock-avoidance strategy. Several routerimplementations use polling as their primary way to schedule packet processing.When a congested router must drop a packet, its choice of which packet to dropcan have signi�cant e�ects. Our modi�cations do not a�ect which packets aredropped; we only change when they are dropped. The policy was and remains\drop-tail"; other policies might provide better results [Floyd and Jacobson 1993].Fall [1994] discusses the problem of overload in non-
ow-controlled systems suchas routers. His approach improves system behavior by reducing per-packet andper-byte overheads, and thus increases the MLFRR, but does not directly improveoverload behavior. His approach complements ours, but does not solve the livelockproblem.Druschel and Banga's \Lazy Receiver Processing" (LRP) [Druschel and Banga1996] work is a more radical approach, which includes among its goals a partialsolution to the livelock problem. LRP depends on early demultiplexing of receivedpackets, which can either be done in software (SOFT-LRP), or in a special networkinterface (NI-LRP). NI-LRP fully solves the livelock problem, by explicitly sheddingexcess load in the network interface, whereas our approach implicitly sheds excessload by simply not servicing the interface. NI-LRP therefore can select whichpackets to drop, based on higher-level considerations; our approach is oblivious tothe value of any given packet. SOFT-LRP postpones livelock, by improving systeme�ciency, but does not prevent it. It may be possible to combine the SOFT-LRPdesign with some of our techniques, thereby achieving both high performance andpreventing livelock, without requiring special network interface implementations.Mosberger and Peterson [1996] describe an even more radical approach in theScout operating system, which uses the concept of a \path" as its basic designprinciple. Paths, as used in Scout, are a more formal version of the LRP approach,relying on early packet classi�cation to assign high-level priorities to packets, im-mediately upon reception. This gives Scout the ability to shed load selectively; itis not clear if Scout currently prevents livelock in all situations. Scout, LRP, andour work all share the premise that if a packet is going to be dropped, it is betterto drop it as early as possible.Massalin and Pu [1990] describe a feedback-based scheduling system, used in theSynthesis Kernel, which adjusts the amount of CPU time allocated to a thread,based on queue lengths. This scheduler attempts to avoid congestion by allocatingmore time to threads with full input queues, and less time to threads with fulloutput queues. Our approach is vaguely similar, although cruder: we simply shuto� the input to the polling system when any of its output queues becomes too full,which implicitly stops it from consuming CPU time.Some of our initial work on improved interface driver algorithms is described inChang et al. [1993].Some of the work presented in this article was �rst done in the context of Ca-ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



248 � J. C. Mogul and K. K. Ramakrishnanlaveras, an advanced development project at Digital [Ramakrishnan et al. 1995;Vahalia et al. 1995]. The Calaveras kernel was designed to provide a foundation forbuilding a high-bandwidth distributed �le server capable of supporting traditionaldata as well as continuous media; in particular, it was used for a video-on-demandserver. The Calaveras scheduler supported three classes of tasks, including isochron-ous tasks (primarily for video and audio streams), real-time tasks with weights forallocating CPU resources, and general-purpose tasks. Interrupt handlers did nowork except to set a 
ag indicating that a device needed service; the rest of thejob of servicing an I/O event was then performed by a real-time task, invoked by apolling thread. Livelock was thus avoided, as long as the interrupt interarrival timewas longer than the time required to handle each interrupt and set the 
ag. Thislightweight-handler design also reduced interrupt overhead, because very little CPUstate had to be saved on an interrupt. Measurements of the Calaveras prototypeshowed that it did succeed in avoiding livelock.11. FUTURE WORKAlthough the implementation described in this article is straightforward and robust,and earlier versions have been deployed to customer installations, we see severalareas that may require additional research.11.1 Faster ImplementationsThe experiments reported on in this article were done on a relatively slow LAN(Ethernet, at 10 Mbits/sec.) and on the slowest available CPU that would run theDigital UNIX operating system. This allowed us to investigate the performanceregime at and near overload, but the results cannot be extrapolated to predict theperformance of state-of-the-art LANs and CPUs.Use of faster CPUs in itself would be no problem; our kernel will run withoutmodi�cation on the fastest Alpha system. However, we would be unable to saturatesuch a system with our existing Ethernet-based test setup. To do high-speed exper-iments, we would have to obtain or construct a much faster packet generator. Wewould also have to apply our modi�cations to a driver for a faster LAN technology,such as FDDI or ATM. Unfortunately, such drivers seem to be far more complexthan those for Ethernet interfaces. (Fast Ethernet would provide a suitable LANspeed, but no Fast Ethernet interface is available for the ancient Alpha workstationwe used in these experiments.)Memory-system performance has not usually improved quite as rapidly as thepeak CPU instruction issue rate. This implies that future processors will be lesssensitive to instruction counts, and more sensitive to memory locality. We expectthat this will change the relative performance advantages of our kernel modi�ca-tions, but we cannot predict which direction these changes will go.11.2 Extension to Multiprocessor KernelsMost computer vendors now sell some form of multiprocessor, to increase the per-formance of high-end systems beyond what is possible with a single CPU. Symmet-ric Multiprocessing (SMP) systems have been quite successful in many applications,and typically run a traditional operating system kernel that has been modi�ed tosupport multiple kernel threads.ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



Eliminating Receive Livelock in an Interrupt-Driven Kernel � 249Although Digital UNIX is an SMP kernel, we have not yet extended our workto a true SMP environment. Our current kernel could run on SMP hardware, butit would do all of the interface driver and network processing on just one of theprocessors.We believe that our polling approach allows better parallelization of interfaceand network processing, and so should improve performance on SMP systems. Inorder to demonstrate this, we would have to extend our modi�cations to includemultiple polling threads, and we may have to modify the interface drivers to supportconcurrency in what were originally interrupt service routines (which are not runconcurrently in the original system).The use of multiple polling threads, while providing the opportunity for parallel-ization, also presents some challenges. How many threads should be active at once?If CPU cycle limits are enabled, should they apply individually to each CPU, orto the entire system? And will the extra overhead of locking defeat the purpose ofparallelization?11.3 Selective Packet DroppingOur approach to input overload is to drop packets as early as possible, to avoidspending resources on packets that would be dropped later on. This is a policyabout when to drop packets, not about which packets to drop. In many cases,some packets may be much more important than others, and the system would bemore e�ective if it preserved those when possible.For example, when video streams are sent using Motion-JPEG compression, in-dividual frames are independent of each other. A frame may be made up of severalpackets, all of which must be received for successful decompression. If one mustdiscard several packets within a short interval, it is better to discard all of thepackets of one frame rather than spreading the discarded packets among multipleframes, which then might all be impossible to decompress. Similarly, Romanowand Floyd [1995] have pointed out that if an ATM switch must drop multiple cells,it is better to drop all the cells of one packet rather than to spread the cell lossevenly over many packets.Fall et al. [1995] have proposed early discard load shedding for Motion-JPEGstreams, a technique in which frames are discarded as early in the processingpipeline as possible. Their goal is to shed load before the system becomes over-loaded, while we have focused on responding to overload, but in either case it seemsuseful to be able to identify speci�c classes of packets to drop.When received packets are dropped late, and therefore at upper levels in thenetwork stack, it is fairly easy to determine which ones are useful and which onesare expendable. In our approach, because we have tried to drop packets as early aspossible, perhaps before the software even sees them, it could be quite hard to dropall of the packets from one Motion-JPEG frame instead of spreading the losses atrandom.Note that labeling techniques such as virtual circuits, \
ows," and packet priorit-ies do not help here: from the sender's point of view, each Motion-JPEG frame hasthe same priority. One cannot a priori say that a given packet is more importantthan another; only when one is forced to drop a packet does it then become possibleto de�ne other packets as good targets for dropping.ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.



250 � J. C. Mogul and K. K. Ramakrishnan11.4 Interactions with Application-Layer SchedulingWe see several connections between scheduling the processing of received packets,and scheduling of application (user-mode) processes. At input rates below the ML-FRR, it may be appropriate to modify the order in which packets are processed so asto reduce latency for packets destined to currently running processes, or to providebatching across the kernel-user boundary (and so reduce context switching). Athigher input rates, where some packets must be discarded, the packet-discard policymight favor packets for currently scheduled processes; this could avoid thrashing.In either case, the process scheduler might prefer to give time to a process that hasa large queue of pending packets.Waldspurger has developed a proportional-share framework for expressing andimplementing application scheduling policies [Waldspurger 1995; Waldspurger andWeihl 1994; 1995]. In this framework, resource shares can be expressed in a kindof currency. He suggests (personal communication, 1995) that if arriving packets,by the use of some simple labeling scheme, carry tokens in such a currency, itmight be possible to integrate the packet-level scheduling decisions with process-level scheduling.For example, suppose that packets were simply marked with the ID of the re-ceiving process. As packets arrive for various processes, the kernel could track thenumber of unreceived packets per blocked process, and unblock the process with thelargest batch of work to perform. If the system becomes overloaded, the networkthread might start discarding all packets except for those destined to the currentprocess.Or suppose we want to drop excess packets according to some predeterminedallocation of resources to processes. The network processing thread could keeptrack of how many packets have been received for each process during a recentinterval, and discard packets in such a way as to maintain packet-consumptionrates in proportion to the predetermined resource allocations.We believe that such mechanisms could be implemented with minimal overhead,but we do not yet know how useful they would be.12. SUMMARY AND CONCLUSIONSSystems that behave poorly under receive overload fail to provide consistent per-formance and good interactive behavior. Livelock is never the best response tooverload. In this article, we have shown how to understand system overload be-havior and how to improve it, by carefully scheduling when packet processing isdone.We have shown, using measurements of aUNIX system, that traditional interrupt-driven systems perform badly under overload, resulting in receive livelock and star-vation of transmits. Because such systems progressively reduce the priority ofprocessing a packet as it goes further into the system, when overloaded they ex-hibit excessive packet loss and wasted work. Such pathologies may be caused notonly by long-term receive overload, but also by transient overload from short-termbursty arrivals.We described a set of scheduling improvements that help solve the problem ofpoor overload behavior. These include:ACM Transactions on Computer Systems, Vol. 15, No. 3, August 1997.
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