
14 October 2008 ACM QUEUE rants: feedback@acmqueue.com

EVENTUALLY
CONSISTENT

FO
CU

SQ
SCALABLE WEB SERVICES

Building reliable distributed systems

at a worldwide scale demands trade-offs—

between consistency and availability.

ACM QUEUE October 2008 15 more queue: www.acmqueue.com

At the foundation of Amazon’s cloud comput-
ing are infrastructure services such as Amazon’s
S3 (Simple Storage Service), SimpleDB, and
EC2 (Elastic Compute Cloud) that provide

the resources for constructing Internet-scale comput-
ing platforms and a great variety of applications. The
requirements placed on these infrastructure services are
very strict; they need to score high marks in the areas of
security, scalability, availability, performance, and cost
effectiveness, and they need to meet these requirements
while serving millions of customers around the globe,
continuously.

Under the covers these services are massive distrib-
uted systems that operate on a worldwide scale. This
scale creates additional challenges, because when a
system processes trillions and trillions of requests, events
that normally have a low probability of occurrence are
now guaranteed to happen and need to be accounted
for up front in the design and architecture of the system.
Given the worldwide scope of these systems, we use rep-
lication techniques ubiquitously to guarantee consistent

Werner Vogels, Amazon.com

Building reliable distributed systems

at a worldwide scale demands trade-offs—

between consistency and availability.

16 October 2008 ACM QUEUE rants: feedback@acmqueue.com

performance and high availability. Although replication
brings us closer to our goals, it cannot achieve them in a
perfectly transparent manner; under a number of condi-
tions the customers of these services will be confronted
with the consequences of using replication techniques
inside the services.

One of the ways in which this manifests itself is in
the type of data consistency that is provided, particularly
when many widespread distributed systems provide an
eventual consistency model in the context of data replica-
tion. When designing these large-scale systems at Ama-
zon, we use a set of guiding principles and abstractions
related to large-scale data replication and focus on the
trade-offs between high availability and data consistency.
In this article I present some of the relevant background
that has informed our approach to delivering reliable
distributed systems that need to operate on a global
scale. An earlier version of this text appeared as a post-
ing on the All Things Distributed weblog and was greatly
improved with the help of its readers.

HISTOrICAL PErSPECTIVE
In an ideal world there would be only one consistency
model: when an update is made all observers would see
that update. The first time this surfaced as difficult to
achieve was in the database systems of the late ’70s. The
best “period piece” on this topic is “Notes on Distributed
Databases” by Bruce Lindsay et al. 5 It lays out the funda-
mental principles for database replication and discusses
a number of techniques that deal with achieving consis-
tency. Many of these techniques try to achieve distribution
transparency—that is, to the user of the system it appears
as if there is only one system instead of a number of
collaborating systems. Many systems during this time
took the approach that it was better to fail the complete
system than to break this transparency.2

In the mid-’90s, with the rise of larger Internet sys-
tems, these practices were revisited. At that time people
began to consider the idea that availability was perhaps
the most important property of these systems, but they
were struggling with what it should be traded off against.
Eric Brewer, systems professor at the University of Califor-
nia, Berkeley, and at that time head of Inktomi, brought

the different trade-offs together in a keynote address to
the PODC (Principles of Distributed Computing) confer-
ence in 2000.1 He presented the CAP theorem, which states
that of three properties of shared-data systems—data
consistency, system availability, and tolerance to network
partition—only two can be achieved at any given time. A
more formal confirmation can be found in a 2002 paper
by Seth Gilbert and Nancy Lynch.4

A system that is not tolerant to network partitions can
achieve data consistency and availability, and often does
so by using transaction protocols. To make this work,
client and storage systems must be part of the same envi-
ronment; they fail as a whole under certain scenarios, and
as such, clients cannot observe partitions. An important
observation is that in larger distributed-scale systems,
network partitions are a given; therefore, consistency and
availability cannot be achieved at the same time. This
means that there are two choices on what to drop: relax-
ing consistency will allow the system to remain highly
available under the partitionable conditions, whereas
making consistency a priority means that under certain
conditions the system will not be available.

Both options require the client developer to be aware
of what the system is offering. If the system emphasizes
consistency, the developer has to deal with the fact that
the system may not be available to take, for example, a
write. If this write fails because of system unavailability,
then the developer will have to deal with what to do with
the data to be written. If the system emphasizes avail-
ability, it may always accept the write, but under certain
conditions a read will not reflect the result of a recently
completed write. The developer then has to decide
whether the client requires access to the absolute latest
update all the time. There is a range of applications that
can handle slightly stale data, and they are served well
under this model.

In principle the consistency property of transaction
systems as defined in the ACID properties (atomicity,
consistency, isolation, durability) is a different kind of
consistency guarantee. In ACID, consistency relates to the
guarantee that when a transaction is finished the database
is in a consistent state; for example, when transferring
money from one account to another the total amount
held in both accounts should not change. In ACID-based
systems, this kind of consistency is often the responsibil-
ity of the developer writing the transaction but can be
assisted by the database managing integrity constraints.

CONSISTENCY—CLIENT ANd SErVEr
There are two ways of looking at consistency. One is from

EVENTUALLY
CONSISTENT

ACM QUEUE October 2008 17 more queue: www.acmqueue.com

the developer/client point of view: how they observe data
updates. The second way is from the server side: how
updates flow through the system and what guarantees
systems can give with respect to updates.

Client-side COnsistenCy

The client side has these components:
• A storage system. For the moment we’ll treat it as a
black box, but one should assume that under the covers
it is something of large scale and highly distributed, and
that it is built to guarantee durability and availability.
• Process A. This is a process that writes to and reads from
the storage system.
• Processes B and C. These two processes are indepen-
dent of process A and write to and read from the storage
system. It is irrelevant whether these are really processes
or threads within the same process; what is important is
that they are independent and need to communicate to
share information.

Client-side consistency has to do with how and
when observers (in this case the processes A, B, or C) see
updates made to a data object in the storage systems. In
the following examples illustrating the different types
of consistency, process A has made an update to a data
object:
• Strong consistency. After the update completes, any
subsequent access (by A, B, or C) will return the updated
value.
• Weak consistency. The system does not guarantee that
subsequent accesses will return the updated value. A
number of conditions need to be met before the value
will be returned. The period between the update and the
moment when it is guaranteed that any observer will
always see the updated value is dubbed the inconsistency
window.
* Eventual consistency. This is a specific form of weak
consistency; the storage system guarantees that if no new
updates are made to the object, eventually all accesses
will return the last updated value. If no failures occur,
the maximum size of the inconsistency window can be
determined based on factors such as communication
delays, the load on the system, and the number of repli-
cas involved in the replication scheme. The most popular
system that implements eventual consistency is DNS
(Domain Name System). Updates to a name are distrib-
uted according to a configured pattern and in combina-
tion with time-controlled caches; eventually, all clients
will see the update.

The eventual consistency model has a number of
variations that are important to consider:

• Causal consistency. If process A has communicated to
process B that it has updated a data item, a subsequent
access by process B will return the updated value, and a
write is guaranteed to supersede the earlier write. Access
by process C that has no causal relationship to process A
is subject to the normal eventual consistency rules.
• Read-your-writes consistency. This is an important
model where process A, after it has updated a data item,
always accesses the updated value and will never see an
older value. This is a special case of the causal consistency
model.
• Session consistency. This is a practical version of the
previous model, where a process accesses the storage
system in the context of a session. As long as the session
exists, the system guarantees read-your-writes consis-
tency. If the session terminates because of a certain failure
scenario, a new session needs to be created and the guar-
antees do not overlap the sessions.
• Monotonic read consistency. If a process has seen a par-
ticular value for the object, any subsequent accesses will
never return any previous values.
• Monotonic write consistency. In this case the system
guarantees to serialize the writes by the same process.
Systems that do not guarantee this level of consistency
are notoriously hard to program.

A number of these properties can be combined. For
example, one can get monotonic reads combined with
session-level consistency. From a practical point of view
these two properties (monotonic reads and read-your-
writes) are most desirable in an eventual consistency
system, but not always required. These two properties
make it simpler for developers to build applications, while
allowing the storage system to relax consistency and
provide high availability.

As you can see from these variations, quite a few dif-
ferent scenarios are possible. It depends on the particular
applications whether or not one can deal with the
consequences.

Eventual consistency is not some esoteric property
of extreme distributed systems. Many modern RDBMSs
(relational database management systems) that provide
primary-backup reliability implement their replication
techniques in both synchronous and asynchronous
modes. In synchronous mode the replica update is part
of the transaction. In asynchronous mode the updates
arrive at the backup in a delayed manner, often through
log shipping. In the latter mode if the primary fails before
the logs are shipped, reading from the promoted backup
will produce old, inconsistent values. Also to support
better scalable read performance, RDBMSs have started

18 October 2008 ACM QUEUE rants: feedback@acmqueue.com

to provide the ability to read from the backup, which is
a classical case of providing eventual consistency guaran-
tees in which the inconsistency windows depend on the
periodicity of the log shipping.

server-side COnsistenCy

On the server side we need to take a deeper look at how
updates flow through the system to understand what
drives the different modes that the developer who uses
the system can experience. Let’s establish a few defini-
tions before getting started:
N = the number of nodes that store replicas of the data
W = the number of replicas that need to acknowledge the
receipt of the update before the update completes
R = the number of replicas that are contacted when a data
object is accessed through a read operation

If W+R > N, then the write set and the read set always
overlap and one can guarantee strong consistency. In the
primary-backup RDBMS scenario, which implements syn-
chronous replication, N=2, W=2, and R=1. No matter from
which replica the client reads, it will always get a consis-
tent answer. In asynchronous replication with reading
from the backup enabled, N=2, W=1, and R=1. In this case
R+W=N, and consistency cannot be guaranteed.

The problems with these configurations, which are
basic quorum protocols, is that when the system cannot
write to W nodes because of failures, the write operation
has to fail, marking the unavailability of the system. With
N=3 and W=3 and only two nodes available, the system
will have to fail the write.

In distributed-storage systems that need to provide
high performance and high availability, the number of
replicas is in general higher than two. Systems that focus
solely on fault tolerance often use N=3 (with W=2 and R=2
configurations). Systems that need to serve very high read
loads often replicate their data beyond what is required
for fault tolerance; N can be tens or even hundreds of
nodes, with R configured to 1 such that a single read will
return a result. Systems that are concerned with consis-
tency are set to W=N for updates, which may decrease the
probability of the write succeeding. A common configu-
ration for these systems that are concerned about fault
tolerance but not consistency is to run with W=1 to get

minimal durability of the update and then rely on a lazy
(epidemic) technique to update the other replicas.

How to configure N, W, and R depends on what the
common case is and which performance path needs to be
optimized. In R=1 and N=W we optimize for the read case,
and in W=1 and R=N we optimize for a very fast write. Of
course in the latter case, durability is not guaranteed in
the presence of failures, and if W < (N+1)/2, there is the
possibility of conflicting writes when the write sets do not
overlap.

Weak/eventual consistency arises when W+R <= N,
meaning that there is a possibility that the read and write
set will not overlap. If this is a deliberate configuration
and not based on a failure case, then it hardly makes
sense to set R to anything but 1. This happens in two very
common cases: the first is the massive replication for read
scaling mentioned earlier; the second is where data access
is more complicated. In a simple key-value model it is easy
to compare versions to determine the latest value written
to the system, but in systems that return sets of objects it
is more difficult to determine what the correct latest set
should be. In most of these systems where the write set
is smaller than the replica set, a mechanism is in place
that applies the updates in a lazy manner to the remain-
ing nodes in the replica’s set. The period until all replicas
have been updated is the inconsistency window discussed
before. If W+R <= N, then the system is vulnerable to read-
ing from nodes that have not yet received the updates.

Whether or not read-your-writes, session, and mono-
tonic consistency can be achieved depends in general on
the “stickiness” of clients to the server that executes the
distributed protocol for them. If this is the same server
every time, then it is relatively easy to guarantee read-
your-writes and monotonic reads. This makes it slightly
harder to manage load balancing and fault tolerance, but
it is a simple solution. Using sessions, which are sticky,
makes this explicit and provides an exposure level that
clients can reason about.

Sometimes the client implements read-your-writes and
monotonic reads. By adding versions on writes, the client
discards reads of values with versions that precede the
last-seen version.

Partitions happen when some nodes in the system
cannot reach other nodes, but both sets are reachable by
groups of clients. If you use a classical majority quorum
approach, then the partition that has W nodes of the
replica set can continue to take updates while the other
partition becomes unavailable. The same is true for the
read set. Given that these two sets overlap, by definition
the minority set becomes unavailable. Partitions don’t

EVENTUALLY
CONSISTENT

ACM QUEUE October 2008 19 more queue: www.acmqueue.com

happen frequently, but they do occur between data cen-
ters, as well as inside data centers.

In some applications the unavailability of any of the
partitions is unacceptable, and it is important that the
clients that can reach that partition make progress. In
that case both sides assign a new set of storage nodes to
receive the data, and a merge operation is executed when
the partition heals. For example, within Amazon the
shopping cart uses such a write-always system; in the case
of partition, a customer can continue to put items in the
cart even if the original cart lives on the other partitions.
The cart application assists the storage system with merg-
ing the carts once the partition has healed.

AMAzON’S dYNAMO
A system that has brought all of these properties under
explicit control of the application architecture is Ama-
zon’s Dynamo, a key-value storage system that is used
internally in many services that make up the Amazon
e-commerce platform, as well as Amazon’s Web Ser-
vices. One of the design goals of Dynamo is to allow the
application service owner who creates an instance of
the Dynamo storage system—which commonly spans
multiple data centers—to make the trade-offs between
consistency, durability, availability, and performance at a
certain cost point.3

SUMMArY
Data inconsistency in large-scale reliable distributed
systems has to be tolerated for two reasons: improving
read and write performance under highly concurrent
conditions; and handling partition cases where a majority
model would render part of the system unavailable even
though the nodes are up and running.

Whether or not inconsistencies are acceptable depends
on the client application. In all cases the developer needs
to be aware that consistency guarantees are provided by
the storage systems and need to be taken into account
when developing applications. There are a number of
practical improvements to the eventual consistency
model, such as session-level consistency and monotonic
reads, which provide better tools for the developer. Many
times the application is capable of handling the eventual
consistency guarantees of the storage system without any
problem. A specific popular case is a Web site in which we
can have the notion of user-perceived consistency. In this
scenario the inconsistency window needs to be smaller
than the time expected for the customer to return for
the next page load. This allows for updates to propagate
through the system before the next read is expected.

The goal of this article is to raise awareness about the
complexity of engineering systems that need to operate
at a global scale and that require careful tuning to ensure
that they can deliver the durability, availability, and
performance that their applications require. One of the
tools the system designer has is the length of the consis-
tency window, during which the clients of the systems
are possibly exposed to the realities of large-scale systems
engineering. Q

referenCes

1. Brewer, E. A. 2000. Towards robust distributed systems
(abstract). In Proceedings of the 19th Annual ACM Sympo-
sium on Principles of Distributed Computing (July 16-19,
Portland, Oregon): 7.

2. A Conversation with Bruce Lindsay. 2004. ACM Queue
2(8): 22-33.

3. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., Vogels, W. 2007. Dynamo: Amazon’s
highly available key-value store. In Proceedings of the
21st ACM Symposium on Operating Systems Principles
(Stevenson, Washington, October).

4. Gilbert , S., Lynch, N. 2002. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant
Web services. ACM SIGACT News 33(2).

5. Lindsay, B. G., Selinger, P. G., et al. 1980. Notes on dis-
tributed databases. In Distributed Data Bases, ed. I. W.
Draffan and F. Poole, 247-284. Cambridge: Cambridge
University Press. Also available as IBM Research Report
RJ2517, San Jose, California (July 1979).

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

WERNER VOGELS is vice president and chief technology
officer at Amazon.com, where he is responsible for driving
the company’s technology vision of continuously enhanc-
ing innovation on behalf of Amazon’s customers at a global
scale. Prior to joining Amazon, he worked as a research
scientist at Cornell University, where he was a principal inves-
tigator in several research projects that targeted the scalabil-
ity and robustness of mission-critical enterprise computing
systems. He has held positions of VP of technology and CTO
in companies that handle the transition of academic technol-
ogy into industry. Vogels holds a Ph.D. from Vrije Universiteit
in Amsterdam and has written close to 80 articles for journals
and conferences, most of them on distributed-systems tech-
nologies for enterprise computing.
© 2008 ACM 1542-7730/ 08/1000 $5.00

