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Building reliable distributed systems  

at a worldwide scale demands trade-offs— 
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At the foundation of Amazon’s cloud comput-
ing are infrastructure services such as Amazon’s 
S3 (Simple Storage Service), SimpleDB, and 
EC2 (Elastic Compute Cloud) that provide 

the resources for constructing Internet-scale comput-
ing platforms and a great variety of applications. The 
requirements placed on these infrastructure services are 
very strict; they need to score high marks in the areas of 
security, scalability, availability, performance, and cost 
effectiveness, and they need to meet these requirements 
while serving millions of customers around the globe, 
continuously. 

Under the covers these services are massive distrib-
uted systems that operate on a worldwide scale. This 
scale creates additional challenges, because when a 
system processes trillions and trillions of requests, events 
that normally have a low probability of occurrence are 
now guaranteed to happen and need to be accounted 
for up front in the design and architecture of the system. 
Given the worldwide scope of these systems, we use rep-
lication techniques ubiquitously to guarantee consistent 
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performance and high availability. Although replication 
brings us closer to our goals, it cannot achieve them in a 
perfectly transparent manner; under a number of condi-
tions the customers of these services will be confronted 
with the consequences of using replication techniques 
inside the services.

One of the ways in which this manifests itself is in 
the type of data consistency that is provided, particularly 
when many widespread distributed systems provide an 
eventual consistency model in the context of data replica-
tion. When designing these large-scale systems at Ama-
zon, we use a set of guiding principles and abstractions 
related to large-scale data replication and focus on the 
trade-offs between high availability and data consistency. 
In this article I present some of the relevant background 
that has informed our approach to delivering reliable 
distributed systems that need to operate on a global 
scale. An earlier version of this text appeared as a post-
ing on the All Things Distributed weblog and was greatly 
improved with the help of its readers.

HISTOrICAL PErSPECTIVE 
In an ideal world there would be only one consistency 
model: when an update is made all observers would see 
that update. The first time this surfaced as difficult to 
achieve was in the database systems of the late ’70s. The 
best “period piece” on this topic is “Notes on Distributed 
Databases” by Bruce Lindsay et al. 5 It lays out the funda-
mental principles for database replication and discusses 
a number of techniques that deal with achieving consis-
tency. Many of these techniques try to achieve distribution 
transparency—that is, to the user of the system it appears 
as if there is only one system instead of a number of 
collaborating systems. Many systems during this time 
took the approach that it was better to fail the complete 
system than to break this transparency.2 

In the mid-’90s, with the rise of larger Internet sys-
tems, these practices were revisited. At that time people 
began to consider the idea that availability was perhaps 
the most important property of these systems, but they 
were struggling with what it should be traded off against. 
Eric Brewer, systems professor at the University of Califor-
nia, Berkeley, and at that time head of Inktomi, brought 

the different trade-offs together in a keynote address to 
the PODC (Principles of Distributed Computing) confer-
ence in 2000.1 He presented the CAP theorem, which states 
that of three properties of shared-data systems—data 
consistency, system availability, and tolerance to network 
partition—only two can be achieved at any given time. A 
more formal confirmation can be found in a 2002 paper 
by Seth Gilbert and Nancy Lynch.4 

A system that is not tolerant to network partitions can 
achieve data consistency and availability, and often does 
so by using transaction protocols. To make this work, 
client and storage systems must be part of the same envi-
ronment; they fail as a whole under certain scenarios, and 
as such, clients cannot observe partitions. An important 
observation is that in larger distributed-scale systems, 
network partitions are a given; therefore, consistency and 
availability cannot be achieved at the same time. This 
means that there are two choices on what to drop: relax-
ing consistency will allow the system to remain highly 
available under the partitionable conditions, whereas 
making consistency a priority means that under certain 
conditions the system will not be available. 

Both options require the client developer to be aware 
of what the system is offering. If the system emphasizes 
consistency, the developer has to deal with the fact that 
the system may not be available to take, for example, a 
write. If this write fails because of system unavailability, 
then the developer will have to deal with what to do with 
the data to be written. If the system emphasizes avail-
ability, it may always accept the write, but under certain 
conditions a read will not reflect the result of a recently 
completed write. The developer then has to decide 
whether the client requires access to the absolute latest 
update all the time. There is a range of applications that 
can handle slightly stale data, and they are served well 
under this model. 

In principle the consistency property of transaction 
systems as defined in the ACID properties (atomicity, 
consistency, isolation, durability) is a different kind of 
consistency guarantee. In ACID, consistency relates to the 
guarantee that when a transaction is finished the database 
is in a consistent state; for example, when transferring 
money from one account to another the total amount 
held in both accounts should not change. In ACID-based 
systems, this kind of consistency is often the responsibil-
ity of the developer writing the transaction but can be 
assisted by the database managing integrity constraints. 

CONSISTENCY—CLIENT ANd SErVEr
There are two ways of looking at consistency. One is from 
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the developer/client point of view: how they observe data 
updates. The second way is from the server side: how 
updates flow through the system and what guarantees 
systems can give with respect to updates. 

Client-side COnsistenCy 

The client side has these components: 
• A storage system. For the moment we’ll treat it as a 
black box, but one should assume that under the covers 
it is something of large scale and highly distributed, and 
that it is built to guarantee durability and availability. 
• Process A. This is a process that writes to and reads from 
the storage system. 
• Processes B and C. These two processes are indepen-
dent of process A and write to and read from the storage 
system. It is irrelevant whether these are really processes 
or threads within the same process; what is important is 
that they are independent and need to communicate to 
share information. 

Client-side consistency has to do with how and 
when observers (in this case the processes A, B, or C) see 
updates made to a data object in the storage systems. In 
the following examples illustrating the different types 
of consistency, process A has made an update to a data 
object:
• Strong consistency. After the update completes, any 
subsequent access (by A, B, or C) will return the updated 
value. 
• Weak consistency. The system does not guarantee that 
subsequent accesses will return the updated value. A 
number of conditions need to be met before the value 
will be returned. The period between the update and the 
moment when it is guaranteed that any observer will 
always see the updated value is dubbed the inconsistency 
window. 
* Eventual consistency. This is a specific form of weak 
consistency; the storage system guarantees that if no new 
updates are made to the object, eventually all accesses 
will return the last updated value. If no failures occur, 
the maximum size of the inconsistency window can be 
determined based on factors such as communication 
delays, the load on the system, and the number of repli-
cas involved in the replication scheme. The most popular 
system that implements eventual consistency is DNS 
(Domain Name System). Updates to a name are distrib-
uted according to a configured pattern and in combina-
tion with time-controlled caches; eventually, all clients 
will see the update. 

The eventual consistency model has a number of 
variations that are important to consider: 

• Causal consistency. If process A has communicated to 
process B that it has updated a data item, a subsequent 
access by process B will return the updated value, and a 
write is guaranteed to supersede the earlier write. Access 
by process C that has no causal relationship to process A 
is subject to the normal eventual consistency rules. 
• Read-your-writes consistency. This is an important 
model where process A, after it has updated a data item, 
always accesses the updated value and will never see an 
older value. This is a special case of the causal consistency 
model. 
• Session consistency. This is a practical version of the 
previous model, where a process accesses the storage 
system in the context of a session. As long as the session 
exists, the system guarantees read-your-writes consis-
tency. If the session terminates because of a certain failure 
scenario, a new session needs to be created and the guar-
antees do not overlap the sessions. 
• Monotonic read consistency. If a process has seen a par-
ticular value for the object, any subsequent accesses will 
never return any previous values. 
• Monotonic write consistency. In this case the system 
guarantees to serialize the writes by the same process. 
Systems that do not guarantee this level of consistency 
are notoriously hard to program. 

A number of these properties can be combined. For 
example, one can get monotonic reads combined with 
session-level consistency. From a practical point of view 
these two properties (monotonic reads and read-your-
writes) are most desirable in an eventual consistency 
system, but not always required. These two properties 
make it simpler for developers to build applications, while 
allowing the storage system to relax consistency and 
provide high availability.

As you can see from these variations, quite a few dif-
ferent scenarios are possible. It depends on the particular 
applications whether or not one can deal with the  
consequences. 

Eventual consistency is not some esoteric property 
of extreme distributed systems. Many modern RDBMSs 
(relational database management systems) that provide 
primary-backup reliability implement their replication 
techniques in both synchronous and asynchronous 
modes. In synchronous mode the replica update is part 
of the transaction. In asynchronous mode the updates 
arrive at the backup in a delayed manner, often through 
log shipping. In the latter mode if the primary fails before 
the logs are shipped, reading from the promoted backup 
will produce old, inconsistent values. Also to support 
better scalable read performance, RDBMSs have started 
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to provide the ability to read from the backup, which is 
a classical case of providing eventual consistency guaran-
tees in which the inconsistency windows depend on the 
periodicity of the log shipping. 

server-side COnsistenCy

On the server side we need to take a deeper look at how 
updates flow through the system to understand what 
drives the different modes that the developer who uses 
the system can experience. Let’s establish a few defini-
tions before getting started: 
N = the number of nodes that store replicas of the data 
W = the number of replicas that need to acknowledge the 
receipt of the update before the update completes 
R = the number of replicas that are contacted when a data 
object is accessed through a read operation 

If W+R > N, then the write set and the read set always 
overlap and one can guarantee strong consistency. In the 
primary-backup RDBMS scenario, which implements syn-
chronous replication, N=2, W=2, and R=1. No matter from 
which replica the client reads, it will always get a consis-
tent answer. In asynchronous replication with reading 
from the backup enabled, N=2, W=1, and R=1. In this case 
R+W=N, and consistency cannot be guaranteed. 

The problems with these configurations, which are 
basic quorum protocols, is that when the system cannot 
write to W nodes because of failures, the write operation 
has to fail, marking the unavailability of the system. With 
N=3 and W=3 and only two nodes available, the system 
will have to fail the write. 

In distributed-storage systems that need to provide 
high performance and high availability, the number of 
replicas is in general higher than two. Systems that focus 
solely on fault tolerance often use N=3 (with W=2 and R=2 
configurations). Systems that need to serve very high read 
loads often replicate their data beyond what is required 
for fault tolerance; N can be tens or even hundreds of 
nodes, with R configured to 1 such that a single read will 
return a result. Systems that are concerned with consis-
tency are set to W=N for updates, which may decrease the 
probability of the write succeeding. A common configu-
ration for these systems that are concerned about fault 
tolerance but not consistency is to run with W=1 to get 

minimal durability of the update and then rely on a lazy 
(epidemic) technique to update the other replicas. 

How to configure N, W, and R depends on what the 
common case is and which performance path needs to be 
optimized. In R=1 and N=W we optimize for the read case, 
and in W=1 and R=N we optimize for a very fast write. Of 
course in the latter case, durability is not guaranteed in 
the presence of failures, and if W < (N+1)/2, there is the 
possibility of conflicting writes when the write sets do not 
overlap. 

Weak/eventual consistency arises when W+R <= N, 
meaning that there is a possibility that the read and write 
set will not overlap. If this is a deliberate configuration 
and not based on a failure case, then it hardly makes 
sense to set R to anything but 1. This happens in two very 
common cases: the first is the massive replication for read 
scaling mentioned earlier; the second is where data access 
is more complicated. In a simple key-value model it is easy 
to compare versions to determine the latest value written 
to the system, but in systems that return sets of objects it 
is more difficult to determine what the correct latest set 
should be. In most of these systems where the write set 
is smaller than the replica set, a mechanism is in place 
that applies the updates in a lazy manner to the remain-
ing nodes in the replica’s set. The period until all replicas 
have been updated is the inconsistency window discussed 
before. If W+R <= N, then the system is vulnerable to read-
ing from nodes that have not yet received the updates. 

Whether or not read-your-writes, session, and mono-
tonic consistency can be achieved depends in general on 
the “stickiness” of clients to the server that executes the 
distributed protocol for them. If this is the same server 
every time, then it is relatively easy to guarantee read-
your-writes and monotonic reads. This makes it slightly 
harder to manage load balancing and fault tolerance, but 
it is a simple solution. Using sessions, which are sticky, 
makes this explicit and provides an exposure level that 
clients can reason about. 

Sometimes the client implements read-your-writes and 
monotonic reads. By adding versions on writes, the client 
discards reads of values with versions that precede the 
last-seen version. 

Partitions happen when some nodes in the system 
cannot reach other nodes, but both sets are reachable by 
groups of clients. If you use a classical majority quorum 
approach, then the partition that has W nodes of the 
replica set can continue to take updates while the other 
partition becomes unavailable. The same is true for the 
read set. Given that these two sets overlap, by definition 
the minority set becomes unavailable. Partitions don’t 
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happen frequently, but they do occur between data cen-
ters, as well as inside data centers. 

In some applications the unavailability of any of the 
partitions is unacceptable, and it is important that the 
clients that can reach that partition make progress. In 
that case both sides assign a new set of storage nodes to 
receive the data, and a merge operation is executed when 
the partition heals. For example, within Amazon the 
shopping cart uses such a write-always system; in the case 
of partition, a customer can continue to put items in the 
cart even if the original cart lives on the other partitions. 
The cart application assists the storage system with merg-
ing the carts once the partition has healed.

AMAzON’S dYNAMO 
A system that has brought all of these properties under 
explicit control of the application architecture is Ama-
zon’s Dynamo, a key-value storage system that is used 
internally in many services that make up the Amazon 
e-commerce platform, as well as Amazon’s Web Ser-
vices. One of the design goals of Dynamo is to allow the 
application service owner who creates an instance of 
the Dynamo storage system—which commonly spans 
multiple data centers—to make the trade-offs between 
consistency, durability, availability, and performance at a 
certain cost point.3

SUMMArY 
Data inconsistency in large-scale reliable distributed 
systems has to be tolerated for two reasons: improving 
read and write performance under highly concurrent 
conditions; and handling partition cases where a majority 
model would render part of the system unavailable even 
though the nodes are up and running. 

Whether or not inconsistencies are acceptable depends 
on the client application. In all cases the developer needs 
to be aware that consistency guarantees are provided by 
the storage systems and need to be taken into account 
when developing applications. There are a number of 
practical improvements to the eventual consistency 
model, such as session-level consistency and monotonic 
reads, which provide better tools for the developer. Many 
times the application is capable of handling the eventual 
consistency guarantees of the storage system without any 
problem. A specific popular case is a Web site in which we 
can have the notion of user-perceived consistency. In this 
scenario the inconsistency window needs to be smaller 
than the time expected for the customer to return for 
the next page load. This allows for updates to propagate 
through the system before the next read is expected. 

The goal of this article is to raise awareness about the 
complexity of engineering systems that need to operate 
at a global scale and that require careful tuning to ensure 
that they can deliver the durability, availability, and 
performance that their applications require. One of the 
tools the system designer has is the length of the consis-
tency window, during which the clients of the systems 
are possibly exposed to the realities of large-scale systems 
engineering. Q
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