

COS 495 - Lecture 8 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Fall 2011

Figures courtesy of Siegwart & Nourbakhsh

Control Structure

Sensors: Outline

Sensor Examples

- 1. Encoders
- 2. Range Sensors
- 3. Heading Sensors

- A digital optical encoder is a device that converts motion into a sequence of digital pulses. By counting a single bit or by decoding a set of bits, the pulses can be converted to relative or absolute position measurements.
 - Optical encoders are Proprioceptive sensors
 - Can integrate signal to obtain robot position

 Most encoders are composed of a glass or plastic code part with a photographically deposited pattern organized in tracks. As lines in each track interrupt the beam between a photoemitter-detector pair, digital pulses are produced.

- There are two main types
 - 1. Absolute encoders which measure the current orientation of a wheel.
 - 2. Incremental encoders which measure the change in orientation of a wheel.

Absolute Encoder

 The optical disk of the absolute encoder is designed to produce a digital word that distinguishes N distinct positions of the shaft.

Checks each track E.g. 101

- Absolute Encoder
 - 12 track example:

Absolute Encoder

- The resolution of the encoder will depend on the number of tracks. Each track is either clear or black (1 or 0), giving 2^T possible combinations for T tracks.
- For the example above, there are 3 tracks, yielding 8 possible combinations of track readings. Divided among 360 degrees, this leaves a resolution of 360/8 = 45 degrees.
- Disadvantage: Needs a larger disk or strip for higher resolution

- Gray Code:
 - The most common types of numerical encoding used in the absolute encoder are gray and binary codes
 - Gray code uses an ordering of binary numbers such that only one bit changes from one entry to the next.
 - Gray codes for 4 or more bits are not unique.

Gray Code:

Gray Co	de	Binary
0000		0000
0001		0001
0011		0010
0010		0011
0110		0100
0111		0101
0101		0110
0100		0111
1100		1000
1101		1001
1111		1010
1110		1011
1010		1100
1011		1101
1001		1110
1000		1111

Gray codes for 4 or more bits are not unique

Why Gray Code?

- Gray code is used is to eliminate errors that occur due to timing inconsistencies.
- When a disk moves from one position to the next, the different bit flips will occur at different times.

Example:

 When changing from 0011 to 0100, three different bits get flipped. If these happen at different times, the encoder could spit out 0011, 0111, 0101, 0100. This gives 2 erroneous measurements.

- Incremental Encoders
 - Incremental encoders operate by means of a grating moving between a light source and a detector.

http://www.kavlico.com/index_home.html

- Incremental Encoders
 - They need a reference for position measurement.
 - Higher resolution can be obtained more easily.
 - Needs a decoder to detect direction and position/ velocity.

- Incremental Encoders
 - 4X Decoding:

- Incremental Encoders
 - 4X Decoding: Resolution is 360/4N, where N is the number of gratings.

- Incremental Encoders
 - Example:
 - Encoder with 2 tracks instead of 2 sensor positions.
 - Home position track.

Sensors: Outline

Sensor Examples

- 1. Encoders
- 2. Range Sensors
- 3. Heading Sensors

Sensors: Range Sensors

- Range sensors make use of propagation speed of sound or electromagnetic waves respectively.
- Distance traveled by a wave is given by:

$$d = c t$$

- *d* = *distance traveled*
- *c* = *speed of wave propagation*
- *t* = *time* of *flight*

Sensors: Range Sensors

- For sound, v = 0.3 m/ms
- For electromagnetic signals, v = 0.3 m/ns
- If distance = 3 m:
 - $t_{ultrasonic} = 10 ms$
 - t_{laser} = 10 ns
 - t_{laser} is difficult to measure, laser range sensors are expensive and difficult

Sensors: Range Sensors

- Quality of range sensors depend on:
 - Uncertainties of time of arrival of reflected signal
 - Inaccuracies in time of flight measure (laser)
 - Opening angle of transmitted beam (sound)
 - Interaction with the target (specular reflections)
 - Variation of propagation speed

 Sensor transmits a packet of ultrasonic pressure waves

$$d = c t / 2$$

The speed of sound c (340 m/s) in air is:

$$c = \sqrt{\gamma R T}$$

- γ = ratio of specific heats
- *R* = gas constant
- T = temperature in Kelvin

Signals of an ultrasonic sensor

- Frequency typically 40 180 kHz
- Wave generated by piezo transducer
- Receiver may coincide with transmitter
 - Problem with objects too close, Blanking time!
- Sound beam propagates in cone, not points

Other problems

- Soft surfaces that absorb most of sound energy
- Surfaces that are not perpendicular to the direction of sound, get specular reflection
- Low Bandwidth

Sensors: Example Application 1

Clark, Cal Poly SLO

- Transmitted and received beams coaxial
- Transmitter illuminates target with beam
- Receiver detects time needed for round-trip
- Can get 2D or 3D information using mirror sweeps

- Methods for measuring time of flight:
 - Use pulsed laser and measure time of flight directly
 - Measure the phase shift

- Phase Shift Measurement:
 - Wavelength λ relates to modulating freq. *f* as:

$$\lambda = c/f$$

Total distance is:

$$D' = L + 2D$$

- We want to measure the distance to target $2D = \lambda \theta / 2\pi$
 - Where θ is the phase difference between the transmitted and received beams.

Note there is theoretical ambiguity in range estimates

30

Schematic and examples:

a) Schematic

b) EPS Technologies c) SICK

Schematic and examples (cont'):

d) Hokuyo URG Scanning laser range finder

Schematic and examples (cont'):

- Uncertainty
 - Uncertainty of the range is inversely proportional to the square of the received signal amplitude.
 - Dark, distant objects will not produce such good range estimated as closer brighter objects ...

Sensors: Triangulation Laser Range Sensors

Distance is proportional to 1/x

D = f L / x

Position-Sensitive Device (PSD) or Linear Camera

Sensors: Structured Light Range Sensors

- Project structured light on target
- Use camera to perceive light
- Simple geometry will determine range

$$H = D \tan \alpha$$

20

Sensors: Structured Light Range Sensors

- Project structured light on target
- No correspondence problem

Sensors: Example Application 2

Kondo, Tokyo University of Marine Science & Technology

Sensors: Outline

Sensor Examples

- 1. Encoders
- 2. Range Sensors
- 3. Heading Sensors

Sensors: Heading Sensors

- Can determine orientation and inclination
- Can be Proprioceptive (e.g. gyroscope) or Exteroceptive (e.g. compass).
- Used with velocity information from encoders to obtain robot position estimate

"Dead Reckoning"

Sensors: Heading Sensors

Compass

- Over 4000 years old
- Uses earth's magnetic field to provide absolute measure for orientation
- Disadvantages:
 - Earth's magnetic field is weak
 - Field is easily disturbed by other magnetic objects
 - Not dependable for indoor environments

Sensors: Heading Sensors

- Example: Deventech Compass
 - good precision (0.1 degrees).
 - poor accuracy (within 3-4 degrees)

