COS 495 - Lecture 7
Autonomous Robot Navigation

Instructor: Chris Clark
Semester: Fall 2011

Figures courtesy of Siegwart & Nourbakhsh
Control Structure

Prior Knowledge

Localization

Perception

Operator Commands

Cognition

Motion Control
Sensors

- IMU (Inertial Measurement Unit)
- Emergency Stop Button
- Wheel Encoders
- Omnidirectional Camera
- Pan-Tilt Camera
- Sonar Sensors
- Laser Range Scanner
- Bumper

Courtesy of Siegwart & Nourbakhsh
Sensors: Outline

1. Sensors Overview
 1. Sensor classifications
 2. Sensor characteristics

2. Sensor Uncertainty
Sensor Classifications

- Proprioceptive/Exteroceptive Sensors
 - Proprioceptive sensors measure values internal to the robot (e.g. motor speed, heading, …)
 - Exteroceptive sensors obtain information from the robot’s environment (e.g. distance to objects)

- Passive/Active Sensors
 - Passive sensors use energy coming from the environment (e.g. temperature probe)
 - Active sensors emit energy then measure the reaction (e.g. sonar)
Sensor Classifications

<table>
<thead>
<tr>
<th>General classification (typical use)</th>
<th>Sensor System</th>
<th>PC or EC</th>
<th>A or P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tactile sensors (detection of physical contact or closeness; security switches)</td>
<td>Contact switches, bumpers</td>
<td>EC</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Optical barriers</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Noncontact proximity sensors</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td>Wheel/motor sensors (wheel/motor speed and position)</td>
<td>Brush encoders</td>
<td>PC</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Potentiometers</td>
<td>PC</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Synchros, resolvers</td>
<td>PC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Optical encoders</td>
<td>PC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Magnetic encoders</td>
<td>PC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Inductive encoders</td>
<td>PC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Capacitive encoders</td>
<td>PC</td>
<td>A</td>
</tr>
<tr>
<td>Heading sensors (orientation of the robot in relation to a fixed reference frame)</td>
<td>Compass</td>
<td>EC</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Gyroscopes</td>
<td>PC</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Inclinometers</td>
<td>EC</td>
<td>A/P</td>
</tr>
</tbody>
</table>

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.
Sensor Classifications

<table>
<thead>
<tr>
<th>General classification (typical use)</th>
<th>Sensor Sensor System</th>
<th>PC or EC</th>
<th>A or P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground-based beacons (localization in a fixed reference frame)</td>
<td>GPS</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Active optical or RF beacons</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Active ultrasonic beacons</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Reflective beacons</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td>Active ranging (reflectivity, time-of-flight, and geometric triangulation)</td>
<td>Reflectivity sensors</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Ultrasonic sensor</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Laser rangefinder</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Optical triangulation (1D)</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Structured light (2D)</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td>Motion/speed sensors (speed relative to fixed or moving objects)</td>
<td>Doppler radar</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Doppler sound</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td>Vision-based sensors (visual ranging, whole-image analysis, segmentation, object recognition)</td>
<td>CCD/CMOS camera(s)</td>
<td>EC</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Visual ranging packages</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Object tracking packages</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sensors: Basic Characteristics

- **Range**
 - Lower and upper limits
 - E.g. IR Range sensor measures distance between 10 and 80 cm.

- **Resolution**
 - minimum difference between two measurements
 - for digital sensors it is usually the A/D resolution.
 - e.g. $5V / 255$ (8 bit) = 0.02 V
Sensors: Basic Characteristics

- Dynamic Range
 - Used to measure spread between lower and upper limits of sensor inputs.
 - Formally, it is the ratio between the maximum and minimum measurable input, usually in decibals (dB)
 \[\text{Dynamic Range} = 10 \log \left(\frac{\text{UpperLimit}}{\text{LowerLimit}} \right) \]
 - E.g. A sonar Range sensor measures up to a max distance of 3m, with smallest measurement of 1cm.
 \[\text{Dynamic Range} = 10 \log \left(\frac{3}{0.01} \right) \]
 \[= 24.8 \text{ dB} \]
Sensors: Basic Characteristics

- Linearity
 - A measure of how linear the relationship between the sensor’s output signal and input signal.
 - Linearity is less important when signal is treated after with a computer.
Sensors: Basic Characteristics

- Linearity Example
 - Consider the range measurement from an IR range sensor.
 - Let x be the actual measurement in meters, let y be the output from the sensor in volts, and $y = f(x)$.
Sensors: Basic Characteristics

- **Bandwidth or Frequency**
 - The speed with which a sensor can provide a stream of readings
 - Usually there is an upper limit depending on the sensor and the sampling rate
 - E.g. sonar takes a long time to get a return signal.
 - Higher frequencies are desired for autonomous control.
 - E.g. if a GPS measurement occurs at 1 Hz and the autonomous vehicle uses this to avoid other vehicles that are 1 meter away.
Sensors: In Situ Characteristics

- **Sensitivity**
 - Ratio of output change to input change
 - E.g. Range sensor will increase voltage output 0.1 V for every cm distance measured.
 - Sensitivity itself is desirable, but might be coupled with sensitivity to other environment parameters.

- **Cross-sensitivity**
 - Sensitivity to environmental parameters that are orthogonal to the target parameters
 - E.g. some compasses are sensitive to the local environment.
Sensors: In Situ Characteristics

- **Accuracy**
 - The difference between the sensor’s output and the true value (i.e. \(\text{error} = m - v \)).

\[
\text{accuracy} = 1 - \left| \frac{m - v}{v} \right|
\]

- \(m = \text{measured value} \)
- \(v = \text{true value} \)
Sensors: In Situ Characteristics

- **Precision**
 - The reproducibility of sensor results.

 \[
 \text{precision} = \frac{\text{range}}{\sigma}
 \]

 \[
 \sigma = \text{standard deviation}
 \]
Sensors: In Situ Characteristics

- Systematic Error
 - Deterministic
 - Caused by factors that can be modeled (e.g. optical distortion in camera.)

- Random Error
 - Non-deterministic
 - Not predictable
 - Usually described probabilistically
Sensors: In Situ Characteristics

- Measurements in the real-world are dynamically changing and error-prone.
 - Changing illuminations
 - Light or sound absorbing surfaces
- Systematic versus random errors are not well-defined for mobile robots.
 - There is a cross-sensitivity of robot sensor to robot pose and environment dynamics
 - Difficult to model, appear to be random
Sensors: Outline

1. Sensors Overview
2. Sensor Uncertainty
Sensor Uncertainty

- How can it be represented?
 - With probability distributions.
Sensor Uncertainty

- Representation
 - Describe measurement as a random variable X
 - Given a set of n measurements with values ρ_i
 - Characterize statistical properties of X with a *probability density function* $f(x)$
Sensor Uncertainty

- Expected value of X is the mean μ
 \[\mu = E[X] = \int_{-\infty}^{\infty} x f(x) \, dx \]

- The variance of X is σ^2
 \[\sigma^2 = Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx \]
Sensor Uncertainty

- Expected value of X is the mean μ

$$
\mu = E[X] = \sum_{x}^{n} x
$$

- The variance of X is σ^2

$$
\sigma^2 = \text{Var}(X) = \sum_{x}^{n} (x - \mu)^2
$$
Sensor Uncertainty

- Use a Gaussian Distribution

\[f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) \]
Sensor Uncertainty

- How do we use the Gaussian?
 - Learn the variance of sensor measurements ahead of time.
 - Assume mean measurement is equal to actual measurement.

- Example:
 - If a robot is 1.91 meters from a wall, what is the probability of getting a measurement of 2 meters?
Sensor Uncertainty

Example cont’:

- Answer – if the sensor error is modeled as a Gaussian, we can assume the sensor has the following probability distribution:
- Then, use the distribution to determine \(P(x=2) \).