

COS 495 - Lecture 7 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Fall 2011

Figures courtesy of Siegwart & Nourbakhsh

Control Structure

Sensors

IMU Inertial Measurement Unit

Emergency Stop Button

Wheel Encoders

Omnidirectional Camera

Pan-Tilt Camera

Sonar Sensors

Laser Range Scanner

Bumper

Courtesy of Siegwart & Nourbakhsh

Sensors: Outline

1. Sensors Overview

- 1. Sensor classifications
- 2. Sensor characteristics
- 2. Sensor Uncertainty

Sensor Classifications

- Proprioceptive/Exteroceptive Sensors
 - Proprioceptive sensors measure values internal to the robot (e.g. motor speed, heading, ...)
 - Exteroceptive sensors obtain information from the robots environment (e.g. distance to objects)
- Passive/Active Sensors
 - Passive sensors use energy coming from the environment (e.g. temperature probe)
 - Active sensors emit energy then measure the reaction (e.g. sonar)

Sensor Classifications

General classification	Sensor	PC or	A or P
(typical use)	Sensor System	EC	
Tactile sensors	Contact switches, bumpers	EC	P
(detection of physical contact or	Optical barriers	EC	A
closeness; security switches)	Noncontact proximity sensors	EC	A
Wheel/motor sensors (wheel/motor speed and position)	Brush encoders Potentiometers Synchros, resolvers Optical encoders Magnetic encoders Inductive encoders Capacitive encoders	PC PC PC PC PC PC PC	P P A A A A A
Heading sensors	Compass	EC	P
(orientation of the robot in relation to	Gyroscopes	PC	P
a fixed reference frame)	Inclinometers	EC	A/P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.

Sensor Classifications

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Ground-based beacons (localization in a fixed reference frame)	GPS Active optical or RF beacons Active ultrasonic beacons Reflective beacons	EC EC EC EC	A A A A
Active ranging (reflectivity, time-of-flight, and geo- metric triangulation)	Reflectivity sensors Ultrasonic sensor Laser rangefinder Optical triangulation (1D) Structured light (2D)	EC EC EC EC EC	A A A A
Motion/speed sensors (speed relative to fixed or moving objects)	Doppler radar Doppler sound	EC EC	A A
Vision-based sensors (visual ranging, whole-image analy- sis, segmentation, object recognition)	CCD/CMOS camera(s) Visual ranging packages Object tracking packages	EC	Р

- Range
 - Lower and upper limits
 - E.g. IR Range sensor measures distance between 10 and 80 cm.
- Resolution
 - minimum difference between two measurements
 - for digital sensors it is usually the A/D resolution.
 - e.g. 5V / 255 (8 bit) = 0.02 V

Dynamic Range

- Used to measure spread between lower and upper limits of sensor inputs.
- Formally, it is the ratio between the maximum and minimum measurable input, usually in decibals (dB)
 Dynamic Range = 10 log[UpperLimit / LowerLimit]
- E.g. A sonar Range sensor measures up to a max distance of 3m, with smallest measurement of 1cm.
 Dynamic Range = 10 log[3 / 0.01]

Linearity

- A measure of how linear the relationship between the sensor's output signal and input signal.
- Linearity is less important when signal is treated after with a computer

Linearity Example

- Consider the range measurement from an IR range sensor.
- Let x be the actual measurement in meters, let y be the output from the sensor in volts, and y=f(x).

- Bandwidth or Frequency
 - The speed with which a sensor can provide a stream of readings
 - Usually there is an upper limit depending on the sensor and the sampling rate
 - E.g. sonar takes a long time to get a return signal.
 - Higher frequencies are desired for autonomous control.
 - E.g. if a GPS measurement occurs at 1 Hz and the autonomous vehicle uses this to avoid other vehicles that are 1 meter away.

- Sensitivity
 - Ratio of output change to input change
 - E.g. Range sensor will increase voltage output 0.1 V for every cm distance measured.
 - Sensitivity itself is desirable, but might be coupled with sensitivity to other environment parameters.
- Cross-sensitivity
 - Sensitivity to environmental parameters that are orthogonal to the target parameters
 - E.g. some compasses are sensitive to the local environment.

- Accuracy
 - The difference between the sensor's output and the true value (i.e. error = m v).

$$accuracy = 1 - |m - v|$$

m = *measured value*

v = true value

- Precision
 - The reproducibility of sensor results.

precision = range

 σ

 σ = standard deviation

- Systematic Error
 - Deterministic
 - Caused by factors that can be modeled (e.g. optical distortion in camera.)
- Random Error
 - Non-deterministic
 - Not predictable
 - Usually described probabilistically

- Measurements in the real-world are dynamically changing and error-prone.
 - Changing illuminations
 - Light or sound absorbing surfaces
- Systematic versus random errors are not welldefined for mobile robots.
 - There is a cross-sensitivity of robot sensor to robot pose and environment dynamics
 - Difficult to model, appear to be random

Sensors: Outline

- 1. Sensors Overview
- 2. Sensor Uncertainty

- How can it be represented?
 - With probability distributions.

- Representation
 - Describe measurement as a random variable X
 - Given a set of *n* measurements with values ρ_l
 - Characterize statistical properties of X with a probability density function f(x)

Expected value of X is the mean μ

$$\mu = E[X] = \int_{-\infty}^{\infty} x f(x) \, dx$$

• The variance of X is σ^2

$$\sigma^2 = Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

Expected value of X is the mean μ

$$\mu = E[X] = \frac{\sum_{n=1}^{n} x_{n}}{n}$$

• The variance of X is σ^2

$$\sigma^2 = Var(X) = \underbrace{\sum_{i=1}^{n} (x - \mu)^2}_{n}$$

Use a Gaussian Distribution

- How do we use the Gaussian?
 - Learn the variance of sensor measurements ahead of time.
 - Assume mean measurement is equal to actual measurement.
- Example:
 - If a robot is 1.91 meters from a wall, what is the probability of getting a measurement of 2 meters?

- Example cont':
 - Answer if the sensor error is modeled as a Gaussian, we can assume the sensor has the following probability distribution:
 - Then, use the distribution to determine P(x=2).

