COS 495 - Lecture 6
Autonomous Robot Navigation

Instructor: Chris Clark
Semester: Fall 2011

Figures courtesy of Siegwart & Nourbakhsh
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Linear Systems

= Recall that the forward kinematics are a linear
differential equation.

= We will use this equation to help develop a
motion controller for point tracking

= \We start by observing how the state x behaves if
it obeys the following equation:

X = dx/dt = ax
where a is a constant



Linear Systems

= |t should be obvious that the solution to the
equation

X =axX

IS

x(t) = x,exp(at)
where

X, IS the initial state



Linear Systems

= To confirm this solution, substitute into the
original equation:

X = ax
d[x,exp(at)]/dt = a[x,exp(at)]
ax,exp(at) = ax,exp(at)



Linear Systems

= To view how the state x behaves over time, we
can plot out x=x,exp(at), assuming a is positive:

x(1)

7 time



Linear Systems

= If ais negative and we can plot out x=x, exp(at),
we get much different results:

x(1)
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8 time



Linear Systems

* This exponential decay informs us that the state x
decays to zero over time.
* We say this system is “STABLE".

= We use this property in control theory to drive states
down to zero (e.g. if @ = X 40 - X , drive e to 0).

x(t)

Xo

9 time



Linear Systems

* The above example was a one dimensional linear
system (i.e. single state x).

= Qur system is a multi-dimensional system (i.e. 3
states x, y, 0).

= We need to describe the system with matrices:
X = Ax

where A Is a matrix such that A& R™"
10 x is a vector such that x& R1xn
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Linear Systems

* In this case, the system
X = Ax
Is said to be stable if the eigen-values of A are
less than O.
* The eigen values of A, represented by A, are
coefficients that satisfy the equation:
Ax; = Ax;
for particular states called x;, called the eigen
vectors.



Linear Systems

= We solve for eigen values by noting:

(A-Al)x=0
= For this to hold true,
det (A-Al)=0
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Linear Systems

= Example: 3 6
A=|:1 4].
- A
ASal = [31 4EA]
det(A—=X) = (3-A)(@4-X)-6
= M -7T\A+6
= (A=6)(A-1)

Therefore A, =6, A, = 1
13 The system is not stable!
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Linear Systems

= Summary:

» |f our robot behaves like a system of the form
x=Ax, where the eigen values of A are negative
and x represents the difference between
desired and actual states, the system will move

to our desired state!
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Motion Control

= Goal is to follow a trajectory
from an initial state to some
desired goal location.

= Several approaches

» Could construct a global
trajectory first, then track
points on the trajectory

I OoCa I I y amical



Motion Control

= |f we define the error to be
in the robot frame:

e() =[xy 0]’
» Goal is to find gain matrix K
such that control of v(t) and

w(t) will drive the error e(t)

to zero.

v(t) 1= Ke(

w(t) Assume goal is
17 at [0 0 0]




Motion Control

= Recall our forward kinematics

‘x) (cos® 0)[v
y =|sin6 0|lw
0 0 1

\ J \ J
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Motion Control

‘ ).(': :'.l'

p = /Ax2 + Ay?
a = -0 +atan2(Ay, Ax)

p = -0-a

= \We use the coordinate transformation
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Motion Control

= Now we define the problem as driving
the robot to goal

N\

0 0
al| =0
\[3)/ \OJ
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Motion Control

= We know this will happen if the
dynamics of the system obey

-

P P
al = A «a
\/3/ \[3)/

Where A is a 3x3 matrix with eigen values less than O.
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Motion Control

= Using the coordinate transformation,
calculate the new kinematics:

Goal
0 = projection of von p
= -v cos(a)
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Motion Control

= Using the coordinate transformation,
calculate the new kinematics:

o3 = projection of v perpendicular to p
= -vsin(a)
g = -vsin(a)/p
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Motion Control

= Using the coordinate transformation,
calculate the new kinematics:

-6
-8

v sin(a)/p - w

Qe Qe Q
I
Ne ™
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Motion Control

= |n matrix from:

'] [-cosa 0 v
a|=|sina/p -1||w| forawithin (72, /2]
\/§ ) |sina/p 0
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Motion Control

= Let’ s try the control law:
v=k,p w=k,atKy

= Note that this is a form of P control, and if
p, o, B all go to zero, then v and w will go
to zero.
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Motion Control

= To analyze controller, substitute control

law Into kinematics and linearize:
= For small x, cosx =1 and sinx = x

(o ) . N\ A

0 K, 0 O | p
a| = 0 -(k,-k) -k;| o
\[3’/ \0 -K 0/ \[3’/

0

= This is in the form...

X =Ax
27



Motion Control

= Check for stability:

» Take the determinant of A and solving for eigen
values leads to:

(A+k,) (22+ Ak, -k,) -k k) = 0

» Thus the system will be stable if:
k,>0 ky<0 k,-k,>0
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Motion Control

» Testing this control law with many different
start points:
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Motion Control

= The derived control law works well if o &
[-T1/2, T1/2]

» For other cases where abs(a) > 11/2, we
must modify the controller. So that the
robot will move backwards to the desired
position when required
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Motion Control

= Backwards Example:
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Motion Control

= Backwards Method:

0 = Ax2 + Ay?
a = -0 +atan2(-Ay, -Ax)
p = -0 -«




Motion Control

» Backwards Method Summary:
It a & [-11/2, /2]

» Use regular transform to polar coordinates
= Use control law:  v=kp w=k,a+kgp

= Else

= Redefine ¢ as shown in backwards method
= Use control law: v=-kp w=k,a+ky

33
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Reachable Space

= Kinematic Constraints

= One can calculate constraints on each
individual wheel, then combine for
constraints on entire robot.

= Two main constraints:

» Rolling Constraint: no slipping!
» Sliding Constraint: no lateral movement!

35
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Reachable Space

» Degrees of Freedom:

» Def n: The number of
coordinates that it takes to
uniquely specify the state of

a system.

* |n 3D, there are 6 degrees of
freedom associated to the
movement of a rigid body: 3
for its position, and 3 for its
orientation.

B J Stone, Univ. of Western Australia



Reachable Space

= Configurations in the Workspace

= A robot’ s workspace is defined by the
Degrees Of Freedom of the robot state.

* Not all robot configurations within the
workspace are reachable

1<
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Reachable Space

= Holonomic Robots

= A robot is holonomic if it has zero
nonholonomic constraints.

= A nonholonomic constraint is one that is not
iIntegrable.
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Reachable Space

= Paths in the Workspace

= Path’ s in the workspace are limited,
especially if the robot is nonholonomic

[™h]
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Reachable Space

* Trajectories in the Workspace
= A trajectory is a path parameterized by time.

= Admissible paths don’t always lead to
admissible trajectories.
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