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COS 495 - Lecture 3 
Autonomous Robot Navigation 

Instructor: Chris Clark 
Semester: Fall 2011 

Figures courtesy of Siegwart & Nourbakhsh 
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Control Structure 

Perception 

Localization Cognition 

Motion Control 

Prior Knowledge Operator Commands 
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Locomotion & Robot 
Representations 

1.  Locomotion 
1.  Legged Locomotion 
2.  Snake Locomotion 
3.  Free-Floating Motion 
4.  Wheeled Locomotion 

2.  Continuous Representations 
3.  Forward Kinematics 
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Locomotion 

§  Locomotion is the act of moving from 
place to place. 

§  Locomotion relies on the physical 
interaction between the vehicle and its 
environment. 

§  Locomotion is concerned with the 
interaction forces, along with the 
mechanisms and actuators that generate 
them. 
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Locomotion - Issues 

§  Stability 
§ Number of contact 

points 
§ Center of gravity 
§  Static versus 

Dynamic 
stabilization 

§  Inclination of 
terrain 

§  Contact 
§ Contact point or 

area 
§  Angle of contact 
§  Friction 

§  Environment 
§  Structure 
§ Medium 
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Locomotion in Nature 
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Locomotion in Robots 

§  Many locomotion concepts are inspired 
by nature 

§  Most natural locomotion concepts are 
difficult to imitate technically 

§  Rolling, which is NOT found in nature, is 
most efficient 
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Locomotion in Robots: Examples 

§  Locomotion via Climbing 

Courtesy of T. Bretl 
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Locomotion in Robots: Examples 

§  Locomotion via Hopping 

Courtesy of S. Martel 
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Locomotion in Robots: Examples 

§  Locomotion via Sliding 

Courtesy of G. Miller  
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Locomotion in Robots: Examples 

§  Locomotion via Flying 

GRASP Lab, Univ. of Pennsylvania  
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Locomotion in Robots: Examples 

§  Locomotion via Self Reconfigurable Robots 

Courtesy of USC 
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Locomotion in Robots: Examples 

§  Other types of motion 

Courtesy of S. Martel Courtesy of ARL, 
Stanford 
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Locomotion in Robots: Examples 

§  Other types of motion 



15 

Legged Locomotion 

§  Nature inspired. 
§  The movement of walking biped is close 

to rolling. 

§  Number of legs determines stability of 
locomotion 
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Legged Locomotion 

§  Degrees of freedom per leg 
§  Trade-off exists between complexity and stability 

§  Degrees of freedom per system 
§  Too many, needed gaited motion 
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Legged Locomotion 

§  Walking gaits 
§  The gait is the 

repetitive sequence of 
leg movements to 
allow locomotion 

§  The gait is 
characterized by the 
sequence of lift and 
release events of 
individual legs. 

Changeover                          
Walking 

Galloping 
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Legged Locomotion 

Courtesy of Pulstech 
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Wheeled Locomotion 

§  Wheel types             a)            b) 
 
a) Standard Wheel 

§ 2 DOF 

b) Castor Wheel 
§ 3 DOF 
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Wheeled Locomotion 

§  Wheel types                c)            d) 
 
c) Swedish Wheel 

§ 3 DOF 

d) Spherical Wheel 
§ Technically difficult 
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Wheeled Locomotion 

§  Wheel Arrangements 
§  Three issues: Stability, Maneuverability and 

Controllability 
§  Stability is guaranteed with 3 wheels, 

improved with four. 
§  Tradeoff between Maneuverability and 

Controllability 
§ Combining actuation and steering on one wheel 

increases complexity and adds positioning errors  
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Locomotion & Robot 
Representations 

1.  Locomotion 
2.  Continuous Representations 

1.  Global Coordinate Frames 
2.  Local Coordinate Frames 
3.  Transformations 

3.  Forward Kinematics 
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Continuous Representations 

§  To control a robot we need to represent the 
robot’s state with some quantifiable variables. 

§  Given the state description, we model the motion 
of the robot with differential equations: 

     Kinematics 
§  Once we have the Kinematics equations, we can 

develop a control law that will bring a robot to 
the desired location. 
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Continuous Representations 

§  To control a robot we need to represent 
the robot’s state we use coordinate 
frames: 
§  Global frame 
§  Local frame 
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Global (Inertial) Coordinate frame 
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Global (Inertial) Coordinate frame 

§  Anchor a coordinate frame to the environment 

XI 

YI 

θ 
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Global (Inertial) Coordinate frame 

§  With this coordinate frame, we describe the 
robot state as: 
     ξI = [x y θ]I 

XI 

YI 

θ 
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Local Coordinate frame 

§  Anchor a coordinate frame to the robot 

XR YR 
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Local Coordinate frame 

§  With this coordinate frame, we describe the 
robot state as: 
     ξR = [x y θ]R = [0 0 0] 

 

 XR YR 
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Local Coordinate frame 

§  The local frame is useful when considering 
taking measurements of environment objects. 
§  Consider the detection of an wall using a range 

finder: 
 

XR YR 

ρobject 

αobject object 
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Local Coordinate frame 

§  The measurement is taken relative to the robot’s 
local coordinate frame (ρobject, αobject) 

§  We can calculate the position of the measurement in 
local coordinate frames: 
     xobject, R = ρobject cos( αobject) 
     yobject, R = ρobject sin( αobject) 

 

 

XR YR 

ρobject 

αobject object 
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Local Coordinate frame 

§  The local frame is also useful when considering 
velocity states: 
   dξR/dt  = [dx/dt dy/dt dθ/dt]R 

 
       = [ x  y  θ ]R 

 
               = ξ R 
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Local Coordinate frame 

§  Often we know the velocities of the robot in the 
local coordinate frame: 
    x  = v 

 

    y  = 0 

 
    θ  = w 
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Transformations 

§  We are also interested in the robot’s velocities 
with respect to the global frame. 

§  To calculate these, we need to consider the 
transformation R between the two frames: 
     ξR = R(θ)ξI 
     ξI = R-1(θ)ξR 

§  Note that R is a function of theta, the relative 
angle between the two frames. 
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Transformations 

§  Let’s obtain the transformation matrix, starting 
with the XI direction: 

XI 

YI 

θ 

XR YR 

xI 

xR 

xI = xR cos(θ) 
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Transformations 

§  Now the YI direction: 

XI 

YI 

θ 

XR YR yI xR yI = xR sin(θ) 

θ 
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Transformations 

§  What about rotational velocity? 

XI 

YI 

θ 

XR YR θI = θR 
θR 
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Transformations 

§  Lets put our equations in matrix form: 
     xI       cos(θ)   0    0     xR 

     yI  =   sin(θ)    0    0     yR 

     θI         0         0    1     θR 
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Transformations 

§  Lets put our equations in matrix form: 
     xI       cos(θ)   0    0     xR 

     yI  =   sin(θ)    0    0     yR 

     θI         0         0    1     θR 
     

ξI                       R(θ)-1                ξR  
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Transformations 

§  Or we can rewrite: 
              cos(θ)   0      v 

     ξI  =   sin(θ)    0     w 

                  0         1 
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Locomotion & Robot 
Representations 

1.  Locomotion 
2.  Continuous Representations 
3.  Forward Kinematics 
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Kinematics 

§  The transformations we just defined form 
the basis of our forward Kinematics 
§  The Kinematics equations should model how 

velocities in the global frame - ξI , are a 
function of wheel speed inputs – φ1 and φ2. 
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Forward Kinematics 

               
 w(t) 

v(t) 

P 2L 

r 

ϕ2 ϕ1 
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Forward Kinematics 

ϕ 

§  Before we continue, we need to understand the 
relation between rotational velocity and forward 
velocity. 

rϕ = v 
. 

r 

v 
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Forward Kinematics 

ϕ 

§  Apply this to a wheel on the robot. 

r 

v 

v 

rϕ = v 
. 
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Forward Kinematics 

ω1 2L P 

v1 

§  Apply the same equation to a top view of the 
robot, assuming only wheel 1 is rotating. 

ω1 

v1 = 2Lω1 
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Forward Kinematics 

v1 

§  Lets look in more detail: 
§  If the left wheel has velocity 0, and right wheel has velocity v, 

the robot will spin with the left wheel acting as the center of 
rotation. §  There is no doubt that the 

wheel velocity induces a 
rotational velocity ω1. 

§  The right wheel travels a 
distance 2π(2L) in 1 rotation. 

§  To make 1 full circle, it takes  
2π(2L)/v1 seconds. 

§  The rotational velocity is then 
(2π rad) / (2π(2L)/v1 seconds) 
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Forward Kinematics 

v1 

§  So the rotational velocity induced by the right wheel 
is: 
     ω1 = v1 /2L rad/s 
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Forward Kinematics 

v2 

§  Similarly, the rotational velocity induced by the left 
wheel is: 
     ω2 = -v2 /2L rad/s 

§  Note the negative sign because 
forward wheel velocity induces 
a negative rotational velocity on 
the robot. 
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Forward Kinematics 

ω2 = -rϕ2 
          2L 

ω1 =  rϕ1 
          2L 

§  Now, substitute velocities v1 and v2 calculated 
from wheel speeds (slide 43) into the rotational 
velocity equations (slides 46, 47).  
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Forward Kinematics 

     w(t) = ω1 + ω2  

§  Now, the rotational velocities can be calculated 
by summing the components of velocities from 
each wheel: 

§  The forward velocity is the sum of the two 
components, (i.e. average of 2 velocities) again 
using the same equation from slide 44: 

   v(t) = L(ω1 - ω2 ) 
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Transformations 

§  Recall: 
     xI       cos(θ)   0    0      v 

     yI  =   sin(θ)    0    0      0 

     θI         0         0    1      w 
     

ξI                       R(θ)-1                ξR  
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Forward Kinematics 

      ξI = R(θ)-1   rϕ1 + rϕ2 
                                 2       2 

        0 
                                 rϕ1 - rϕ2 
                                 2L    2L 

.        . 

§  The resulting kinematics equation is: 
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Forward Kinematics 

§  We now know how to calculate how wheel 
speeds affect the robot velocities in the global 
coordinate frame. 

§  This will be useful when we want to control the 
robot to track points (i.e. move to desired 
locations in the global coordinate frame by 
controlling wheel speeds). 


