COS 495 - Lecture 3
Autonomous Robot Navigation

Instructor: Chris Clark
Semester: Fall 2011

Figures courtesy of Siegwart & Nourbakhsh
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Locomotion & Robot
Representations

|1. Locomotion |
1. Legged Locomotion
2. Snake Locomotion
3. Free-Floating Motion
4. Wheeled Locomotion

2. Continuous Representations
3. Forward Kinematics




Locomotion

= Locomotion is the act of moving from
place to place.

= L ocomotion relies on the physical
Interaction between the vehicle and its
environment.

= | ocomotion is concerned with the
interaction forces, along with the
mechanisms and actuators that generate
them.



Locomotion - Issues

= Stability = Contact
= Number of contact = Contact point or
points area
= Center of gravity * Angle of contact
= Static versus * Friction
Dynamic » Environment
stabilization

= Structure

= |Inclinati f
nclination o . Medium

5 terrain



Locomotion in Nature
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Locomotion in Robots

= Many locomotion concepts are inspired
by nature

» Most natural locomotion concepts are
difficult to imitate technically

» Rolling, which is NOT found in nature, is
most efficient



Locomotion in Robots: Examples

* | ocomotion via Climbing

8 Courtesy of T. Bretl



Locomotion in Robots: Examples

= Locomotion via Hopping

NanoWalker Project
Displacement

gaboratoire de NanoRobotique,
Ecole Polytechnique de Montréal
(c) 2003

9 Courtesy of S. Martel




Locomotion in Robots: Examples

= |.ocomotion via Sliding

10 Courtesy of G. Miller



Locomotion in Robots: Examples

= L ocomotion via Flying

o B

GRASP Lab, Univ. of Pennsylvania
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Locomotion in Robots: Examples

= L ocomotion via Self Reconfigurable Robots

12 Courtesy of USC
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Locomotion in Robots: Examples

= Other types of motion
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Legged Locomotion

= Nature inspired.

= The movement of walking biped is close
to rolling.

= Number of legs détermines stability of
15 locomotion



Legged Locomotion

» Degrees of freedom per leg
* Trade-off exists between complexity and stability

» Degrees of freedom per system
= Too many, needed gaited motion e

hip abduction angle (5)

P N
e )@ .
© knee flexion angle (©)

- . L ] \
hip flexion angle (@)
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Legged Locomotion

= Walking gaits

= The gait is the o;— “g!:
repetitive sequence of | « .
leg movements to ra
allow locomotion -

= The gaitis %
characterized by the Sl
sequence of lift and

O—
free fly ‘x
G— U—

release events of Changeover
individual legs. Walking

Galloping




Legged Locomotion
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18 Courtesy of Pulstech




Wheeled Locomotion

= Wheel types

a) Standard Wheel @ - \@ _
= 2 DOF
b) Castor Wheel @ ﬂ N'

= 3 DOF

—
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Wheeled Locomotion

= Wheel types

c) Swedish Wheel
= 3 DOF

d) Spherical Wheel
= Technically difficult Jgs:

20




Wheeled Locomotion

* Wheel Arrangements

» Three issues: Stability, Maneuverability and
Controllability

= Stability is guaranteed with 3 wheels,
improved with four.

* Tradeoff between Maneuverability and
Controllability

» Combining actuation and steering on one wheel

Y iIncreases complexity and adds positioning errors



Locomotion & Robot
Representations

1. Locomotion

‘2. Continuous Representations
1. Global Coordinate Frames
2. Local Coordinate Frames
3. Transformations

3. Forward Kinematics
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Continuous Representations

= To control a robot we need to represent the
robot’ s state with some quantifiable variables.

= Given the state description, we model the motion
of the robot with differential equations:

Kinematics

= Once we have the Kinematics equations, we can
develop a control law that will bring a robot to
the desired location.



Continuous Representations

= To control a robot we need to represent
the robot’ s state we use coordinate
frames:

= Global frame
= | ocal frame

24



Global (Inertial) Coordinate frame

o

25




Global (Inertial) Coordinate frame

= Anchor a coordinate frame to the environment

26




Global (Inertial) Coordinate frame

= \With this coordinate frame, we describe the
robot state as:

é’,=[xy9],

27 - X,




Local Coordinate frame

= Anchor a coordinate frame to the robot

28




Local Coordinate frame

= \With this coordinate frame, we describe the
robot state as:

Er=[xyO6]r=[000]

Y,é,\ ® /XR

29



Local Coordinate frame

* The local frame is useful when considering
taking measurements of environment objects.

» Consider the detection of an wall using a range
finder:

30
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Local Coordinate frame

= The measurement is taken relative to the robot’ s
local coordinate frame (0,yject; Aopject)

= \WWe can calculate the position of the measurement in
local coordinate frames:

Xobject, R~ P object COS( aobject)
Yobject R = Pobject SIN( Agpject)

. object
_______ 10 —ol;e;t_ o _\




Local Coordinate frame

* The local frame is also useful when considering
velocity states:

dE/dt = [dx/dt dy/dt d6/dt]

=[xy 0]

=& R

KY.
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Local Coordinate frame

= Often we know the velocities of the robot in the
local coordinate frame:

X =v
y =0
6 =w
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Transformations

» \We are also interested in the robot’ s velocities
with respect to the global frame.

= To calculate these, we need to consider the
transformation R between the two frames:

&= R(O)E,
5 = R(0)5

= Note that R is a function of theta, the relative
angle between the two frames.



Transformations

= Let’ s obtain the transformation matrix, starting
with the X, direction:

X, = X cOS(6)

39 ¢




Transformations

= Now the Y, direction:

y) = Xg Sin(6)

36 X




Transformations

= \What about rotational velocity?

37 ¢




Transformations

= Lets put our equatlons N matrlx form

x, cos(6) 0 0 )?R
y;|=|sin(6) 0 0] |yg
\GI/ N 0 0 1 J \ éR/

38



Transformations

= Lets put our equatlons N matrlx form
x, cos(e) 0 0 xR

y;|=|sin6) 0 O0]|]yg

\éb N 0 0 1 J U éR/
—— - - —
g R(6)" &
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Transformations

= Or we can rewrite:
rcos(e) 0\ V

E =|sin6) 0| w

0 1)

\
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Locomotion & Robot
Representations

1. Locomotion
2. Continuous Representations
13. Forward Kinematics |




Kinematics

* The transformations we just defined form
the basis of our forward Kinematics

* The Kinematics equations should model how
velocities in the global frame - §, ,are a
function of wheel speed inputs — cp1 and q02

42



Forward Kinematics

P P1 v(t)

2L P
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Forward Kinematics

= Before we continue, we need to understand the
relation between rotational velocity and forward
velocity.

Se
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Forward Kinematics

= Apply this to a wheel on the robot.
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Forward Kinematics

= Apply the same equation to a top view of the
robot, assuming only wheel 1 is rotating.

2L v, = 2lw,
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Forward Kinematics

= |Lets look in more detail:

= |f the left wheel has velocity 0, and right wheel has velocity v,
the robot will spin with the left wheel acting as the center of

rotation. = There is no doubt that the
wheel velocity induces a

rotational velocity W,.

= The right wheel travels a
distance 2m(2L) in 1 rotation.

= To make 1 full circle, it takes
21 (2L)/v, seconds.

» The rotational velocity is then

(2 rad) / (2m(2L)/v, seconds)
47 > V1




Forward Kinematics

» So the rotational velocity induced by the right wheel
IS:

w, =V, /2L rad/s

48 :V1
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Forward Kinematics

= Similarly, the rotational velocity induced by the left

wheel is:

w, = -V, /2L rad/s

Vo

= Note the negative sign because
forward wheel velocity induces
a negative rotational velocity on
the robot.



Forward Kinematics

= Now, substitute velocities v, and v, calculated
from wheel speeds (slide 43) into the rotational
velocity equations (slides 46, 47).

Wy = gy
2L
Wy = -I'p,
2L
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Forward Kinematics

= Now, the rotational velocities can be calculated
by summing the components of velocities from
each wheel:

w(t) = w; + w,

* The forward velocity is the sum of the two
components, (i.e. average of 2 velocities) again
using the same equation from slide 44:

51 v(t) = L(w; - wy)



Transformations

= Recall:
x| |cos(@) 0 o[ v
y, =sin@ 0 0| 0
6, | 0 0 1) w,
— O~ — —
g, R(6)" A
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Forward Kinematics

*= The resulting kinematics equation is:

g = R(H)'ﬂ"(% + I’q&'z\
2 2
0
"(.51"'(52
\2L 2L )
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Forward Kinematics

= \We now know how to calculate how wheel
speeds affect the robot velocities in the global
coordinate frame.

* This will be useful when we want to control the
robot to track points (i.e. move to desired
locations in the global coordinate frame by
controlling wheel speeds).



