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COS 495 - Lecture 2 
Autonomous Robot Navigation 

Instructor: Chris Clark 
Semester: Fall 2011 

Figures courtesy of Siegwart & Nourbakhsh 
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Navigation and Control 

1.  Control Architectures 
2.  Navigation Example  
3.  Basic Tools for AUV Navigation 
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Control Architectures 

§  Today, most robots control systems have 
a mixture of planning and behavior-based 
control strategies. 

§  To implement these strategies, a control 
architecture is used. 

§  Control architectures should be: 
§  Modular 
§  Localized 
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Control Architectures 
Desired Characteristics 

§  Code Modularity 
§  Allows programmers to interchange 

environment types sensors, path planners, 
propulsion, etc.  

§  Localization 
§  Embed specific navigation functions within 

modules to allow different levels of control 
(e.g. from task planning to wheel velocity 
control) 
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Control Architectures 
Decomposition 

§  Decomposition allows us to modularize 
our control system based on different 
axes: 

1.  Temporal Decomposition 
–  Facilitates varying degrees of real-time processes 

2.  Control Decomposition 
–  Defines how modules should interact: serial or 

parallel? 
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Control Architectures 
Temporal Decomposition 

§  Factors affecting 
temporal 
decomposition: 
§  Sensor response time 
§  Temporal memory and 

horizon 
§  Spatial Locality 
§  Context Specificity 

T. Memory & 
Horizon 

Context 
Specificity 

Spatial 
Locality 

Sensor 
Response Time 
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Control Architectures 
Temporal Decomposition 

§  Example 
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Control Architectures 
Tiered Architectures 

§  A general tiered architecture for episodic planning 
§  Role of the Executive is: 

§  Switch behaviors 
§  Monitor failures 
§  Call the planner 

§  Planning only when required (e.g. blockage) 
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Control Architectures 
Tiered Architectures 

§  A tiered architecture for integrated planning 

§  Planning is fast and is embedded as a behavior. 
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Control Architectures 
Control Decomposition 

§  An example of a control decomposition using a 
mixture of serial and parallel approaches. 
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Navigation and Control 

1.  Control Architectures 
2.  Navigation Example 

1.  Motion Modeling 
2.  Estimation and Control 
3.  Experiments 

3.  Basic Tools for AUV Navigation 



Navigation Example 

§  Autonomous Control 
§  Goal is to enable autonomous trajectory tracking 

capabilities. 
§  Given individual ROVs have autonomous control, 

multi-vehicle control research will be facilitated. 



Equations of Motion 

§  6 degrees of freedom (DOF): 
§  State vectors: 

body-fixed velocity vector: 
earth-fixed pos. vector: 

DOF Surge Sway Heave Roll Pitch Yaw 

Velocities u v w p q r 

Position & Attitude x y z φ	

 θ	

 ψ	



Forces & Moments X Y Z K M N 



§  The 6-DOF nonlinear dynamic equations of 
motion can be expressed as: 
 
 
 
where: 
  inertia matrix: 
  Coriolis & centripetal matrix: 
  hydrodynamic damping: 
  restoring forces: 
  propulsion forces: 
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Equations of Motion 

§  Initial Assumptions: 
§  The ROV will usually move with low velocity when on mission 
§  Almost three planes of symmetry; 
§  Vehicle is assumed to be performing non-coupled motions. 
§  Horizontal Plane: 

§  Vertical Plan: 
�

[W. Wang et al., 2006] 



Theory vs. Experiment 

§  Coefficients for the dynamic 
model are pre-calculated using 
strip theory;  

§  A series of tests are carried out 
to validate the hydrodynamic 
coefficients, including 
§  Propeller mapping 
§  Added mass coefficients 
§  Damping coefficients 



Propeller Thrust Mapping 

§  The forward thrust can be represented as: 



Direct Drag Forces 

Drag in Heave 
Direction 

Drag in Sway 
Direction 

Drag in Surge 
Direction 



Estimation & Control 

§  Sensor Overview 

§  VideoRay Compass 
§  VideoRay Depth 

Sensor 
§  Desert Star Acoustic 

Positioning System 



Estimation & Control 

§  State Estimation 
§  We fuse several sensor measurements using an Unscented Kalman Filter: 



Estimation & Control 
§  Trajectory Tracking 

§  We use three different controllers: 



Estimation & Control 



Estimation & Control 



Autonomous Control 



Autonomous Control 

§  Hardware Modifications 
q  Added transceiver 
q  Added bouyancy 
q  Shifted weight 
q  Extended feet 



Autonomous Control 



Autonomous Control 



Autonomous Control 



Swimming Pool Experiments 

§  Sample run: x, y state estimates 
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Swimming Pool Experiments 

§  Sample run: bearing state estimates 
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Swimming Pool Experiments 

§  Sample run: depth state estimates 

0 10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (seconds)

de
pt

h 
(m

et
er

s)

 

 
estimate
measurement
reference



Swimming Pool Experiments 

Trial # Mean of x (m) Standard Deviation (m) 
1 3.186 0.431 
2 2.906 0.495 
3 3.095 0.129 
4 3.040 0.137 
5 3.192 0.179 
6 2.890 0.265 
7 2.966 0.154 

[W. Wang et al., 2006] 
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Navigation and Control 

1.  Control Architectures 
2.  Navigation Example 2 
3.  Basic Tools for AUV Navigation 

1.  Coordinate Frames 
2.  Motion Modeling 
3.  P Control 
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Cartesian Coordinates 

§  Describes unique position of 
points in a plane with respect 
to the axis 

§  For each dimension there is 1 
axis 

§  Coordinates are measured in 
“units” in the direction parallel 
to the axis 

§  The origin is fixed to the plane 
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Cartesian Coordinates 

§  One can use cartesian 
coordinates to describe a 
robot’s position 
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Cartesian Coordinates 

§  For our underwater robots, 
we need 3 degrees of 
freedom to express 
position 
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Polar Coordinates 

§  In polar coordinates, we 
specify points on a 2D plane 
using the length of a radius 
arm and an angle 
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Cylindrical Coordinates 

§  For specifying point locations 
in 3D, cylindrical coordinates 
can be used by specifying the 
length of a radius arm, an 
angle, and a height. 
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Polar to Cartesian 

§  How do we convert from polar 
coordinates to Cartesian 
coordinates? 

       x = r cos(θ) 
        y = r sin(θ) 

y 

x 
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Global (Inertial) Coordinate frame 
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Global (Inertial) Coordinate frame 

§  Anchor a coordinate frame to the environment 

XI 

YI 

θ 
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Global (Inertial) Coordinate frame 

§  With this coordinate frame, we describe the 
robot state as: 
     XI = [x y θ]I 

XI 

YI 

θ 
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Local Coordinate frame 

§  Anchor a coordinate frame to the robot 

XR YR 
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Local Coordinate frame 

§  With this coordinate frame, we describe the 
robot state as: 
     XR = [x y θ]R = [0 0 0] 

 

 XR YR 
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Local Coordinate frame 

§  The local frame is useful when considering 
taking measurements of environment objects. 
§  Consider the detection of an wall using a range 

finder: 
 

XR YR 

ρobject 

αobject object 
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Local Coordinate frame 

§  The measurement is taken relative to the robot’s 
local coordinate frame (ρobject, αobject) 

§  We can calculate the position of the measurement in 
local coordinate frames: 
     xobject, R = ρobject cos( αobject ) 
     yobject, R = ρobject sin( αobject ) 

 

 

XR YR 

ρobject 

αobject object 
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Local Coordinate frame 

§  One can calculate the position of the object in the 
global coordinate frame ( xobject,I , yobject,I ) 

 
     xobject, I = xAUV, I  +( xobject,R cos (θAUV, I ) ) + ( yobject,R sin (θAUV, I ) ) 

  yobject, I = yAUV, I  +( xobject,R sin (θAUV, I ) ) + ( yobject,R cos (θAUV, I ) ) 
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Local Coordinate frame 

§  One can calculate αobject if the positions are known 

 θAUV, I + αobject = atan2( yobject – yAUV, xobject – xAUV )  

 

αobject 

object 

θAUV 
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Navigation and Control 

1.  Control Architectures 
2.  Navigation Example 2 
3.  Basic Tools for AUV Navigation 

1.  Coordinate Frames 
2.  Motion Modeling 
3.  P Control 
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A (simple) motion model 

§  Consider a robot moving from position x, y in 
direction θ radians with forward velocity ν m/s 
and rotational velocity w rad/s. 

θ 

ν 

x,y 

w 
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A (simple) motion model 

§  How much will it rotate in t seconds? 
 
      It will rotate a distance of   wt  radians. 

θ 
w 
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A (simple) motion model 

§  So, from time step k to time step k+1, the 
angle changes to:  

 
                              θk+1 = θk + wt 
 
 

θ 
w 
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A (simple) motion model 

§  So, from time step k to time step k+1, the 
position changes to:  

 
                           xk+1 = xk + vt cos( θk ) 
                           yk+1 = yk + vt sin( θk ) 



54 

Navigation and Control 

1.  Control Architectures 
2.  Navigation Example 2 
3.  Basic Tools for AUV Navigation 

1.  Coordinate Frames 
2.  Motion Modeling 
3.  P Control 
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P Control 

§  Proportional Feedback Control – P Control – uses 
the error between the desired and measured 
state to determine the control signal. 

§  If xdesired is the desired state, and x is the actual 
state, we define the error as: 
    e = xdesired – x 
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P Control 

§  The control signal u is calculated as 

    u = KP e 
 

 where KP is called the proportional gain. 
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P Control 

§  Example: 
§  Consider the orientation control of an AUV. Assume 

the orientation is completely controlled by the rear 
rudder fins.  

  

u 

θ 
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P Control 

§  Example cont’: 
§  The control signal u is calculated as 

    u = KP(θdesired - θ) 
§  Notes: 

§  If θdesired = θ, the control signal is 0. 
§  If θdesired < θ, the control signal is negative, resulting in an 

decrease in θ.  
§  If θdesired > θ, the control signal is positive, resulting in an 

increase in θ. 
§  The magnitude of the increase/decrease depends on Kp 
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P Control 

§  Block Diagram: 
    u = KP(θdesired - θ) 

 

KP AUV 
θ u e 

- 
+ θdesired 
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P Control 

§  Time Domain Response of step response 
§  Step from θdesired = 0 to θdesired = 1. 

     

θdesired 

time 
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P Control 

§  Time Domain Response: 
§  Step from θdesired = 0 to θdesired = 8. 
§  Different dynamics in this example… overshoot! 
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Lab 

§  Form a group of Three 
§  Email instructor one list of names along with a group 

number 

§  Start Lab 0 
§  Optional for those with MVS and C# experience 

§  Start Lab 1  
§  Code can be downloaded from the internet 

§  Read Lab 3 
§  Can brainstorm in your groups 


