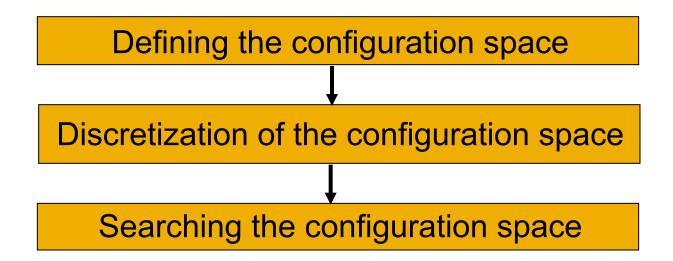

COS 495 - Lecture 19 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Fall 2011

Figures courtesy of Siegwart & Nourbakhsh

Control Structure


Discretizations: Outline

- 1. General Approach to MP
- 2. Discretization Types
- 3. Probabilistic Road Maps

Motion Planning: General Approach

Motion planning is usually done with three steps:

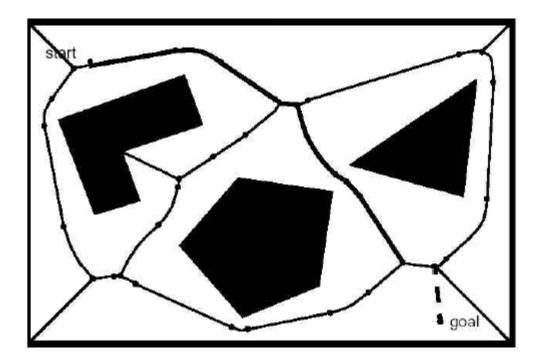
Discretizations: Outline

- 1. General Approach to MP
- 2. Discretization Types
- 3. Probabilistic Road Maps

Motion Planning: Discretizations

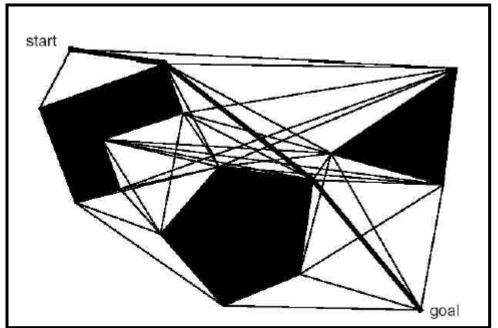
1. Roadmap

 Represent the connectivity of the free space by a network of 1-D curves

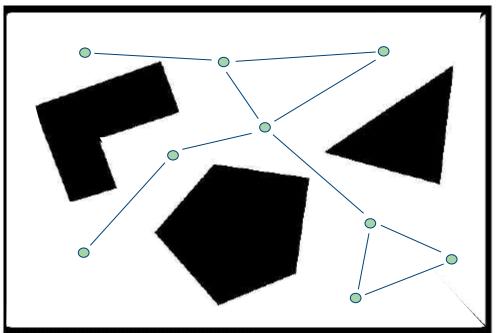

2. Cell decomposition

- Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- 3. Potential field
 - Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Motion Planning: RoadMaps


- Voronoi Diagram
 - Compute maximal distances from objects

Motion Planning: RoadMaps


- Visibility Diagram
 - Introduced in Shakey. Can produce shortest paths in 2-D configuration spaces

Motion Planning: RoadMaps

- Probabilistic Road Maps (PRMs)
 - Randomly add nodes to the roadmap and connect them.

Discretizations: Outline

- 1. General Approach to MP
- 2. Discretization Types
- 3. Probabilistic Road Maps
 - 1. Introduction to PRMs
 - 2. Multi-Query PRMs

- Definition:
 - A probabilistic road map is a discrete representation of a continuous configuration space generated by randomly sampling the free configurations of the C-space and connecting those points into a graph.

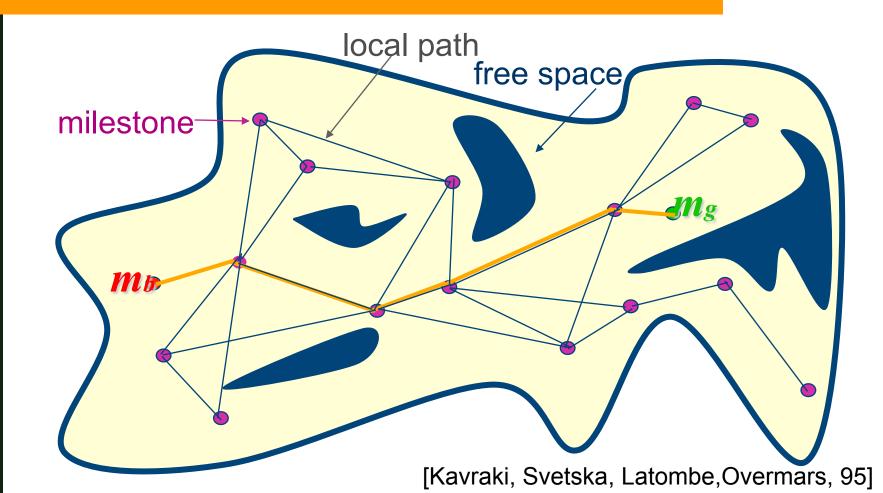
- Goal of PRMs:
 - Quickly generate a small roadmap of the Free Space F that has good coverage and connectivity
- PRMS have proven to useful in mapping free spaces that are difficult to model, or have many degrees of freedom.
 - This can facilitate fast planning for these situations
- Sacrifice completeness for speed

Moving Objects, Kindel

- Two Main Strategies:
 - 1. Multi-Query:
 - Generate a single roadmap of F which can be used many times.
 - 2. Single-Query:
 - Use a new roadmap to characterize the subspace of F which is relevant to the search problem.

Discretizations: Outline

- 1. General Approach to MP
- 2. Discretization Types
- 3. Probabilistic Road Maps
 - 1. Introduction to PRMs
 - 2. Multi-Query PRMs



Multi-Query PRMs

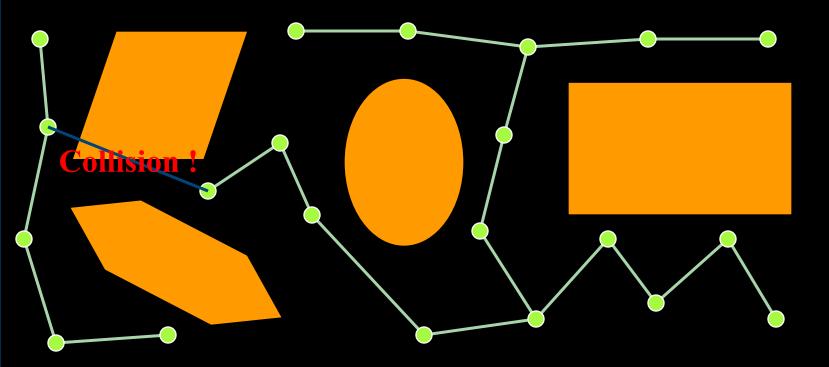
- Multi-Query Strategy
 - 1. Learning Phase:
 - Generate the PRM with two steps:
 - Construction
 - Expansion
 - Can take considerable time
 - 2. Query Phase:
 - Connect start and goal configurations to PRM
 - Perform a graph search to find path
 - Very fast
 - Smooth path?

Multi-Query PRMs

17

- Nomenclature
 - R=(N,E) N E c

RoadMap Set of Nodes Set of edges Configuration

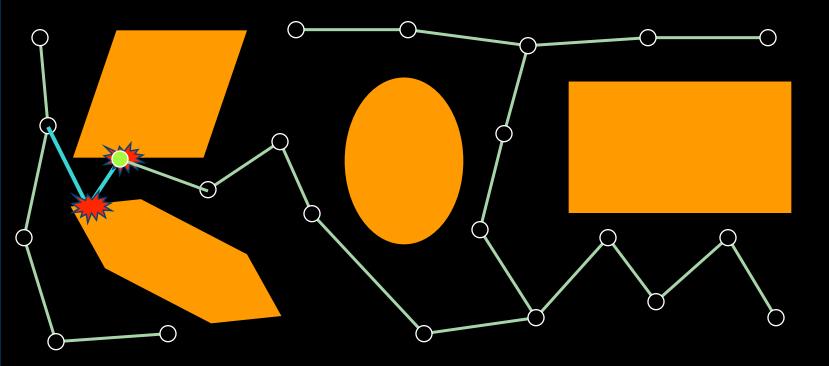

- Construction Step Algorithm
 - 1. Start with empty R=(N,E)
 - 2. Generate a random free config *c* and add to *N*
 - 3. Choose a subset N_c of candidate neighbors around *c* from *N*
 - 4. Try to connect *c* to each node in N_c in the order of increasing distance from *c* (w/ local planner)
 - 5. Add the edge found to *E*
 - 6. Repeat the above until satisfied

- Local Planner
 - Used to connect two nodes.
 - Must contain collision-check.
 - For good performance, the LP must be:
 - 1. Deterministic This eliminates the need for storing local plans.
 - 2. Fast To ensure quick planning queries.

Construction Step

Courtesy of C. Allocco

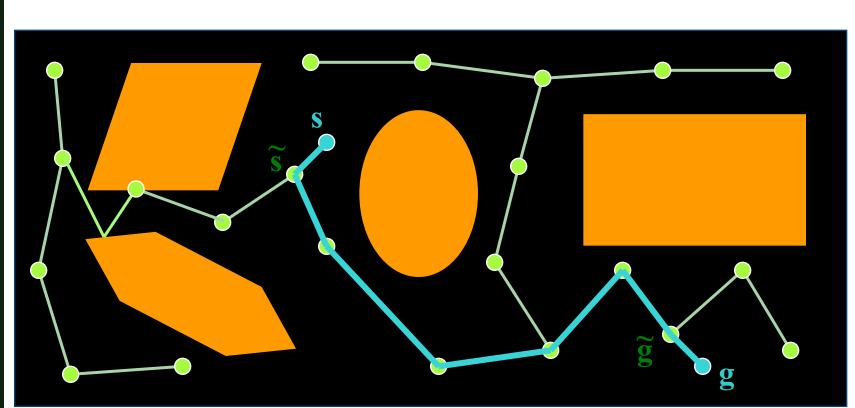
- Expansion Step Algorithm
 - 1. Find the nodes in 'difficult' regions using <u>heuristic</u> weight function w(c)
 - 2. Expand *c* using <u>random-bounce walks</u>
 - 3. Repeat as necessary


- Expansion Weighting Function
 - Several options to define w(c)
 - Inversely proportional to the "number of nodes within some predefined distance from c"
 - Inversely proportional to the "distance from *c* to the nearest connected component not containing *c*"
 - Proportional to the "failure ratio of the local planner"

- Expansion Random-Bounce Walks
 - 1. Loop
 - 1. Pick a random direction of motion in C-space
 - 2. Move in the direction until an obstacle is hit
 - 3. Check for connection with another node
 - 4. Repeat until the path can be connected to another node
 - 2. Store the final config n and the edge (c,n) in R
 - 3. Store the computed path (non-deterministic)
 - 4. Record that *n* belongs to the same connected component as *c*

Expansion Step

Courtesy of C. Allocco



Multi-Query PRMs Query Phase

- Query Phase Algorithm
 - 1. Given the start and goal configurations *s* and *g*, calculate feasible paths P_s and P_g to the nodes *s* and *g* on the roadmap (w/ LP)
 - 2. Recalculate the path *P* from *s* to *g* using the roadmap
 - 3. Return the total path: $P_s P P_a^{-1}$

Multi-Query PRMs Query Phase

Courtesy of C. Allocco

- Two Tenets:
 - 1. Checking sampled configurations and connections between samples for collision can be done efficiently.
 - 2. A relatively small number of milestones and local paths are sufficient to capture the connectivity of the free space.
 - → Exponential convergence in expansive free space (probabilistic completeness)

- Probabilistically Complete
 - If a solution exists, the probability that the planner will find a solution is a (fast growing) function that goes to 1 as running time increases.
 - Example:
 - If a solution exists, the probability of failure decays exponentially to zero with the number of milestones added to the PRM.
 - This is less reliable than a complete algorithm, but is the trade-off for speed.

Probabilistic Road Maps: Discrete and Continous Planning

Courtesy of T. Bretl