

COS 495 - Lecture 18 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Fall 2011

Figures courtesy of Siegwart & Nourbakhsh

Control Structure

Introduction to Motion Planning

- 1. MP Overview
- 2. Metrics
- 3. The Configuration Space
- 4. General Approach to MP

Assembly Planning, Latombe

Tomb Raider 3 (Eidos Interactive)

Cross-Firing of a Tumor, Latombe

Deformable Objects, Kavraki

- Goal of robot motion planning
 - Construct a collision-free path from some initial configuration to some goal configuration for a robot within a workspace containing obstacles.

Inputs

- Geometry of robots and obstacles
- Kinematics/Dynamics of robots
- Start and Goal configurations
- Outputs
 - Continuous sequence of configurations connecting the start and goal configurations

- Assumptions
 - A model of the environment is provided.
 - Partial or full
 - A model of the robot is provided.
 - Kinematic constraints
 - Dynamic constraints

Example:

- Extensions
 - Moving obstacles
 - Multiple robots
 - Movable objects
 - Assembly planning
 - Goal is to acquire information by sensing
 - Nonholonomic constraints
 - Dynamic constraints
 - Stability constraints

- Uncertainty in model, control and sensing
- Exploiting task mechanics (under-actuated systems)
- Physical models and deformable objects
- Integration with higher-level planning

Introduction to Motion Planning

- 1. MP Overview
- 2. Metrics
- 3. The Configuration Space
- 4. General Approach to MP

- Metrics for which to compare planning algorithms:
 - 1. Speed or Complexity
 - 2. Completeness
 - 3. Optimality
 - 4. Feasibility of solutions

1. Speed or Complexity

- Often, planners are compared based on the running time of an algorithm.
- Example: Planner A outperformed Planner B in that it took half the time to solve the same planning problem.

1. Speed or Complexity

- Planners are also compared based on the complexity of the algorithm
 - Example: O(b^d) where b is the breadth and d is the depth of a search tree.

2. Completeness

- A complete algorithm is one that is guaranteed to find a solution if one exists, or determine if no solution exists.
- Time Consuming!
- Example:
 - An exhaustive search will search every possible path to see if it is a feasible solution.

2. Completeness

 A resolution complete planner discretizes the space and returns a path whenever one exists in the discretized representation.

2. Completeness

- A probabilistically complete planner returns a path with high probability if a path exists. It may not terminate if no path exists.
 - E.g. $P(failure) \rightarrow 0$ as time $\rightarrow \infty$
- Weaker form of completeness, but usually faster.

3. Optimality

 Resolution of Discretization can lead to sub-optimal solutions

3. Optimality

 Some algorithms will only guarantee sub-optimal solutions (e.g. Greedy Search).

4. Feasibility of Solutions

- Not all planners take into account the exact model of the robot or environment.
- E.g. Non-differential drive robot

- A complete planner usually requires exponential time in the number of degrees of freedom, objects, etc.
- Theoretical algorithms
 - Strive for completeness and minimal worst-case complexity
 - Difficult to implement
- Heuristic algorithms
 - Strive for efficiency in common situations
 - Use simplifying assumptions
 - Weaker completeness
 - Exponential algorithms that work in practice

Introduction to Motion Planning

- 1. MP Overview
- 2. Metrics
- 3. The Configuration Space
- 4. General Approach to MP

 To facilitate motion planning, the configuration space was defined as a tool that can be used with planning algorithms.

- A configuration q will completely define the state of a robot (e.g. mobile robot x, y, θ)
- The configuration space C, is the space of all possible configurations of the robot.
- The free space $F \subseteq C$, is the portion of the free space which is collision-free.
- The goal of motion planning then, is to find a path in *F* that connects the initial configuration q_{start} to the goal configuration q_{goal}

Example 1: 2DOF manipulator:

Introduction to Motion Planning

- 1. MP Overview
- 2. Metrics
- 3. The Configuration Space
- 4. General Approach to MP

Motion Planning: General Approach

Motion planning is usually done with three steps:

Motion Planning: Defining the Configuration Space

- The configuration space C must include all DOF's that capture all the configurations of the robot with constraints.
- Sometimes we plan with a subspace of *C*.
 - Example 1:Include 3DOF for a mobile robot in static environment - (x,y,θ).
 - Example 2: Include only 2DOF for a mobile robot in static environment - (x,y).
 - Example 3: Include 5DOF for a mobile robot in dynamic environment - (x, y, θ, v, t).

Motion Planning: Defining the Configuration Space

- Plan paths for a point robot
 - Instead of using a robot of fixed dimensions/size, "grow" the obstacles to reflect how close the robot can get.

Motion Planning: Discretizing the Configuration Space

1. Roadmap

 Represent the connectivity of the free space by a network of 1-D curves

2. Cell decomposition

- Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- 3. Potential field
 - Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Motion Planning: Searching the Configuration Space

- Given a discretization of F (e.g. a topological map), a search of the discretized map can be carried out using a Graph search or gradient descent, etc.
- Example: Tree Search (DFS)

Motion Planning: Searching the Configuration Space

Example: Multi Robot MP

