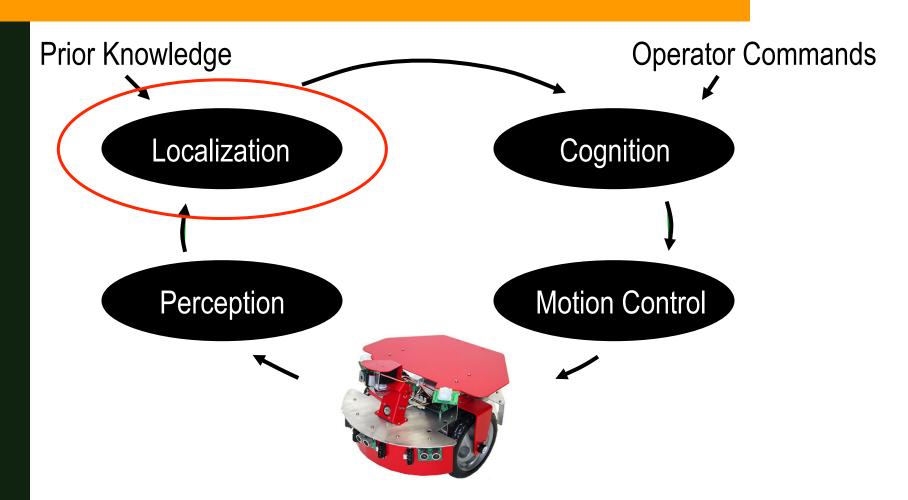


COS 495 - Lecture 16 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Fall 2011

Figures courtesy of Siegwart & Nourbakhsh

Control Structure



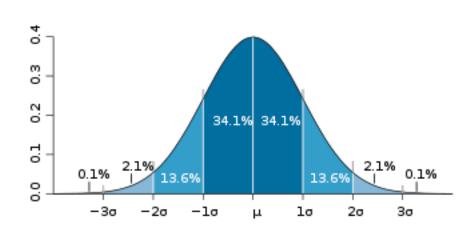
Introduction to the Kalman Filter

- 1. KF Representations
- 2. Two Measurement Sensor Fusion
- 3. Single Variable Kalman Filtering
- 4. Multi-Variable KF Representations

What do Kalman Filters use to represent the states being estimated?

Gaussian Distributions!

- Single variable Gaussian Distribution
 - Symmetrical
 - Uni-modal
 - Characterized by
 - Mean µ
 - Variance σ^2
 - Properties
 - Propagation of errors
 - Product of Gaussians



- Single Var. Gaussian Characterization
 - Mean
 - Expected value of a random variable with a continuous Probability Density Function *p(x)*

$$\mu = \mathrm{E}[X] = \int x \, p(x) \, dx$$

• For a discrete set of *K* samples

$$\mu = \sum_{k=1}^{K} x_k / K$$

- Single Var. Gaussian Characterization
 - Variance
 - Expected value of the difference from the mean squared $\sigma^2 = \mathbb{E}[(X-\mu)^2] = \int (x-\mu)^2 p(x) \, dx$

$$\sigma^2 = E[(X-\mu)^2] = \int (x-\mu)^2 p(x) dx$$

For a discrete set of K samples

$$\sigma^2 = \sum_{k=1}^{K} (x_k - \mu)^2 / K$$

Single variable Gaussian Properties
 Propagation of Errors

$$\left. \begin{array}{l} X \sim N(\mu, \sigma^2) \\ Y = aX + b \end{array} \right\} \quad \Rightarrow \quad Y \sim N(a\mu + b, a^2 \sigma^2)$$

Product of Gaussians

$$X_{1} \sim N(\mu_{1}, \sigma_{1}^{2}) \\ X_{2} \sim N(\mu_{2}, \sigma_{2}^{2}) \} \Rightarrow$$

$$p(X_{1}) \cdot p(X_{2}) \sim N\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}} \mu_{1} + \frac{\sigma_{1}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}} \mu_{2}, \frac{1}{\sigma_{1}^{-2} + \sigma_{2}^{-2}}\right)$$

- Single variable Gaussian Properties...
 - We stay in the "Gaussian world" as long as we start with Gaussians and perform only linear transformations.

Introduction to the Kalman Filter

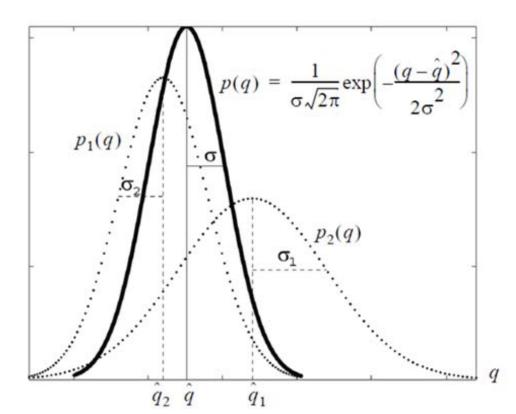
- 1. KF Representations
- 2. Two Measurement Sensor Fusion
- 3. Single Variable Kalman Filtering
- 4. Multi-Variable KF Representations

Example

• Given two measurements q_1 and q_2 , how do we fuse them to obtain an estimate \hat{q} ?

• Assume measurements are modeled as random variables that follow a Gaussian distribution with variance σ_1^2 and σ_2^2 respectively

Example (cont'):



- Example (cont'):
 - Lets frame the problem as minimizing a weighted least squares cost function:

$$S = \sum_{i=1}^{n} w_{i} (\hat{q} - q_{i})^{2}$$

$$\frac{\partial S}{\partial \hat{q}} = \frac{\partial}{\partial \hat{q}} \sum_{i=1}^{n} w_i (\hat{q} - q_i)^2 = 2 \sum_{i=1}^{n} w_i (\hat{q} - q_i) = 0$$

Example (cont'):

• If
$$n=2$$
 and $w_i = 1/\sigma_i^2$

$$\hat{q} = q_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (q_2 - q_1)$$

Introduction to the Kalman Filter

- 1. KF Representations
- 2. Two Measurement Sensor Fusion
- 3. Single Variable Kalman Filtering
- 4. Multi-Variable KF Representations

Single Variable KF

Example: Fusing two Measurements

$$\hat{q} = q_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (q_2 - q_1)$$

We can reformulate this in KF notation

$$\hat{x}_{t} = \hat{x}_{t-1} + K_{t} (z_{t} - \hat{x}_{t-1})$$

$$K_{t} = \frac{\sigma_{t-1}^{2}}{\sigma_{t-1}^{2} + \sigma_{t}^{2}}$$

Single Variable KF

KF for a Discrete Time System

$$\hat{x}_{t} = \hat{x}_{t-1} + K_{t} (z_{t} - \hat{x}_{t-1})$$

$$K_{t} = \frac{\sigma_{t-1}^{2}}{\sigma_{t-1}^{2} + \sigma_{t}^{2}}$$

$$\sigma_{t}^{2} = \sigma_{t-1}^{2} - K_{t} \sigma_{t-1}^{2}$$

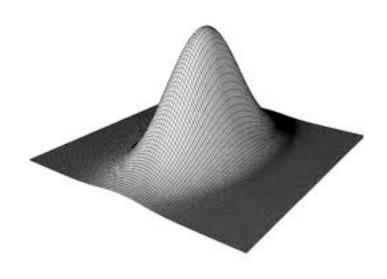
Where

 \hat{x}_t is the current state estimate σ_t^2 is the associated variance z_t^2 is the most recent measurement *K* is the Kalman Gain

Kalman Filter Introduction

- 1. KF Representations
- 2. Two Measurement Sensor Fusion
- 3. Single Variable Kalman Filtering
- 4. Multi-Variable KF Representations

- Multi-variable Gaussian Distribution
 - Symmetrical
 - Uni-modal
 - Characterized by
 - Mean Vector µ
 - Covariance Matrix Σ
 - Properties
 - Propagation of errors
 - Product of Gaussians



- Multi-Var. Gaussian Characterization
 - Mean Vector
 - Vector of expected values of n random variables

$$\mu = E[X] = [\mu_0 \ \mu_1 \ \mu_2 \ \dots \ \mu_n \]^T$$

$$\mu_i = \int x_i p(x_i) \, dx_i$$

- Multi-Var. Gaussian Characterization
 - Covariance
 - Expected value of the difference from the means squared

 $\sigma_{ij} = \operatorname{Cov}[X_i, X_j] = \operatorname{E}[(X_i - \mu_i) (X_j - \mu_j)]$

- Covariance is a measure of how much two random variables change together.
- Positive σ_{ij} when variable *i* is above its expected value, then the other variable *j* tends to also be above its μ_j
- Negative σ_{ij} when variable *i* is above its expected value, then the other variable *j* tends to be below its μ_j

- Multi-Var. Gaussian Characterization
 - Covariance
 - For continuous random variables

$$\sigma_{ij} = \iint (x_i - \mu_i) (x_j - \mu_j) p(x_i, x_j) dx_i dx_j$$

• For discrete set of *K* samples

$$\sigma_{ij} = \sum_{k=1}^{K} (x_{i,k} - \mu_i) (x_{j,k} - \mu_j) / K$$

- Multi-Var. Gaussian Characterization
 - Covariance Matrix
 - Covariance between each pair of random variables

$$\Sigma = \begin{bmatrix} \sigma_{00} \sigma_{01} & \dots & \sigma_{0n} \\ \sigma_{10} \sigma_{11} & \dots & \sigma_{1n} \\ \vdots \\ \sigma_{n0} \sigma_{n1} & \dots & \sigma_{nn} \end{bmatrix}$$

Note:
$$\sigma_{ii} = \sigma_i^2$$

- Multi variable Gaussian Properties
 Propagation of Errors
 $\begin{array}{l} X \sim N(\mu, \Sigma) \\ Y = AX + B \end{array} \right\} \Rightarrow Y \sim N(A\mu + B, A\Sigma A^T)$
 - Product of Gaussians $X_1 \sim N(\mu_1, \Sigma_1)$ $X_2 \sim N(\mu_2, \Sigma_2)$

Next...

Apply the Kalman Filter to multiple variables in the form of a KF.