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COS 495 - Lecture 16 
Autonomous Robot Navigation 

Instructor: Chris Clark 
Semester: Fall 2011 

Figures courtesy of Siegwart & Nourbakhsh 
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Control Structure 

Perception 

Localization Cognition 

Motion Control 

Prior Knowledge Operator Commands 
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Introduction to the Kalman Filter 

1.  KF Representations 
2.  Two Measurement Sensor Fusion 
3.  Single Variable Kalman Filtering 
4.  Multi-Variable KF Representations 
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KF Representations 

§  What do Kalman Filters use to represent 
the states being estimated? 

 
 

  Gaussian Distributions! 
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KF Representations 

§  Single variable Gaussian Distribution 
§  Symmetrical 
§ Uni-modal 
§ Characterized by 

§  Mean µ 
§  Variance σ2 

§  Properties 
§  Propagation of errors 
§  Product of Gaussians 

 



6 

KF Representations 

§  Single Var. Gaussian Characterization 
§ Mean 

§  Expected value of a random variable with a continuous 
Probability Density Function p(x) 

   µ = E[X] =  x p(x) dx 
 

§  For a discrete set of K samples 

  µ = Σ xk /K   

 

    K 
 
 
k=1 
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KF Representations 

§  Single Var. Gaussian Characterization 
§  Variance 

§  Expected value of the difference from the mean squared 

   σ2 =E[(X-µ)2] =  (x – µ)2p(x) dx 
 

§  For a discrete set of K samples 
  σ2 = Σ (xk – µ )2/K   

 

    K 
 
 
k=1 
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KF Representations 

§  Single variable Gaussian Properties 
§  Propagation of Errors 

§  Product of Gaussians 
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KF Representations 

§  Single variable Gaussian Properties… 

§  We stay in the “Gaussian world” as long as we start 
with Gaussians and perform only linear 
transformations.  
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Introduction to the Kalman Filter 

1.  KF Representations 
2.  Two Measurement Sensor Fusion 
3.  Single Variable Kalman Filtering 
4.  Multi-Variable KF Representations 
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Fusing Two Measurements 

§  Example 

§  Given two measurements q1 and q2, how do we fuse 
them to obtain an estimate q ?  

§  Assume measurements are modeled as random 
variables that follow a Gaussian distribution with 
variance σ1

2 and σ2
2  respectively  

 

⌃
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Fusing Two Measurements 

§  Example (cont’): 
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Fusing Two Measurements 

§  Example (cont’): 
§  Lets frame the problem as minimizing a weighted 

least squares cost function: 
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Fusing Two Measurements 

§  Example (cont’): 

§  If n=2 and wi = 1/σi
2  

  q = q1 +     σ1
2       (q2 - q1 ) 

                σ1
2 + σ2

2 

 

⌃
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Introduction to the Kalman Filter 

1.  KF Representations 
2.  Two Measurement Sensor Fusion 
3.  Single Variable Kalman Filtering 
4.  Multi-Variable KF Representations 
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Single Variable KF 

§  Example: Fusing two Measurements 

  q = q1 +     σ1
2       (q2 - q1 ) 

                σ1
2 + σ2

2 
§  We can reformulate this in KF notation 

    
   xt = xt-1 + Kt (zt - xt-1 ) 

   Kt =     σt-1
2 

            σt-1
2 + σt

2 
 

 

⌃ ⌃ ⌃

⌃
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Single Variable KF 

§  KF for a Discrete Time System 
   xt = xt-1 + Kt (zt - xt-1 ) 

   Kt =     σt-1
2 

            σt-1
2 + σt

2 

   σt
2=  σt-1

2 -Kt σt-1
2 

 

§  Where 
  xt is the current state estimate 

   σt
2 is the associated variance 

   zt
2 is the most recent measurement 

   K is the Kalman Gain 

 

⌃ ⌃ ⌃

⌃
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Kalman Filter Introduction 

1.  KF Representations 
2.  Two Measurement Sensor Fusion 
3.  Single Variable Kalman Filtering 
4.  Multi-Variable KF Representations 
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Representations in KF 

§  Multi-variable Gaussian Distribution 
§  Symmetrical 
§ Uni-modal 
§ Characterized by 

§  Mean Vector µ 
§  Covariance Matrix Σ 

§  Properties 
§  Propagation of errors 
§  Product of Gaussians 

 



20 

Representations in KF 

§  Multi-Var. Gaussian Characterization 
§ Mean Vector 

§  Vector of expected values of n random variables 

   µ = E[X] = [ µ0  µ1  µ2 … µn  ]T 

  µi =  xi p(xi) dxi 
 



21 

Representations in KF 

§  Multi-Var. Gaussian Characterization 
§ Covariance 

§  Expected value of the difference from the means squared 

        σij
 =Cov[Xi, Xj] = E[(Xi – µi ) (Xj – µj) ]  

§  Covariance is a measure of how much two random 
variables change together. 

§  Positive σij – when variable i is above its expected value, 
then the other variable j tends to also be above its µj 

§  Negative σij – when variable i is above its expected value, 
then the other variable j tends to be below its µj 
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Representations in KF 

§  Multi-Var. Gaussian Characterization 
§ Covariance 

§  For continuous random variables 

         σij
 =    (xi – µi ) (xj – µj ) p(xi , xj ) dxi dxj 

§  For discrete set of K samples 
        σij

 = Σ (xi,k – µi )(xj,k – µj )/K   
    K 
 
 
k=1 
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Representations in KF 

§  Multi-Var. Gaussian Characterization 
§ Covariance Matrix 

§  Covariance between each pair of random variables 

              σ00
  σ01

   … σ0n
  

   Σ   =   σ10
  σ11

   … σ1n
  

    : 
              σn0

  σn1
   … σnn  

s 

    Note:  σii
 =σi

2 
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Representations in KF 

§  Multi variable Gaussian Properties 
§  Propagation of Errors 

§  Product of Gaussians 
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Next… 

 
 Apply the Kalman Filter to 
 multiple variables in the form of 
 a KF. 


