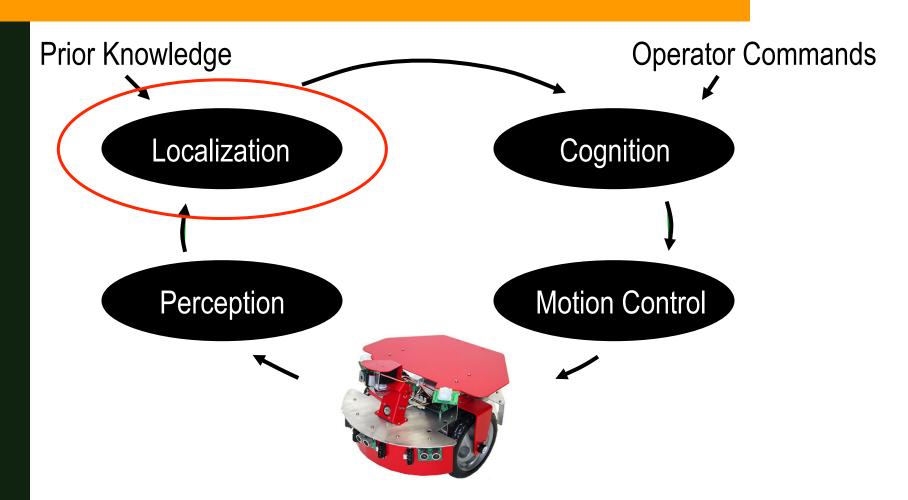


COS 495 - Lecture 15 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Fall 2011

Figures courtesy of Siegwart & Nourbakhsh

Control Structure



Particle Filter Localization: Outline

1. Particle Filters

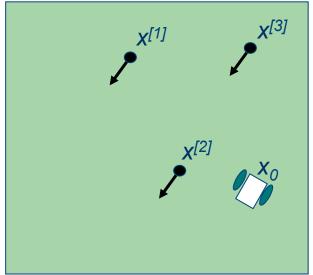
- 1. What are particles?
- 2. Algorithm Overview
- 3. Algorithm Example
- 2. PFL Application Example

- Like Markov localization, Particle Filters represent the belief state with a set of possible states, and assigning a probability of being in each of the possible states.
- Unlike Markov localization, the set of possible states are not constructed by discretizing the configuration space, they are a randomly generated set of "particles".

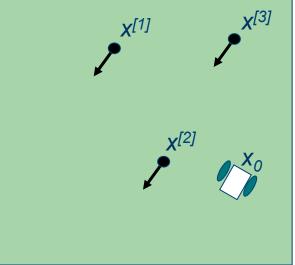
- A particle is an individual state estimate.
- A particle is defined by its:
 - 1. State values that determine its location in the configuration space, e.g. [$x y \theta$]
 - 2. A probability that indicates it's likelihood.
- Particle filters use many particles to for representing the belief state.

- Example:
 - A Particle filter uses 3 particles to represent the position of a (white) robot in a square room.
 - If the robot has a perfect compass, each particle is described as:

 $x^{[1]} = [x^{1} y^{1}]$ $x^{[2]} = [x^{2} y^{2}]$ $x^{[3]} = [x^{3} y^{3}]$



- Example:
 - Each of the particles x^[1], x^[2], x^[3] also have associated weights w^[1], w^[2], w^[3].
 - In the example below, x^[2] should have the highest weight if the filter is working.



- The user can choose how many particles to use:
 - More particles ensures a higher likelihood of converging to the correct belief state
 - Fewer particles may be necessary to ensure realtime implementation

Particle Filter Localization: Outline

1. Particle Filters

- 1. What are particles?
- 2. Algorithm Overview
- 3. Algorithm Example
- 2. PFL Application Example

Markov Localization Particle Filter

- Algorithm (Initialize at *t*=0):
 - Randomly draw N states in the work space and add them to the set X₀.
 - Iterate on these N states over time (see next slide).

Markov Localization Particle Filter

- Algorithm (Loop over time step t):
 - 1. For *i* = 1 ... *N*
 - 2. Pick $x_{t-1}^{[i]}$ from X_{t-1}
 - 3. Draw $x_t^{[i]}$ with probability $p(x_t^{[i]} | x_{t-1}^{[i]}, o_t)$
 - 4. Calculate $w_t^{[i]} = p(z_t | x_t^{[i]})$
 - 5. Add $x_t^{[i]}$ to X_t^{Temp}
 - 6. For j = 1 ... N
 - 7. Draw $x_t^{[j]}$ from X_t^{Temp} with probability $w_t^{[j]}$
 - 8. Add $x_t^{[i]}$ to X_t

Prediction

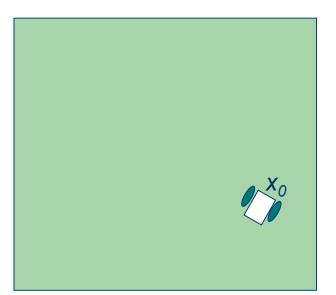
Correction

Particle Filter Localization: Outline

1. Particle Filters

- 1. What are particles?
- 2. Algorithm Overview
- 3. Algorithm Example
- 2. PFL Application Example

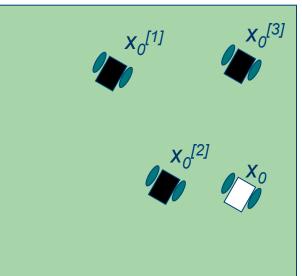
 Provided is an example where a robot (depicted below), starts at some unknown location in the bounded workspace.



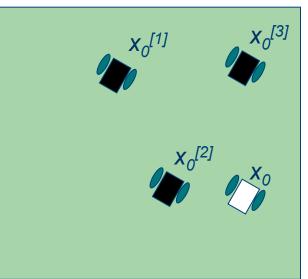
- At time step t_0 :
 - We randomly pick N=3 states represented as

$$X_0 = \{ x_0^{[1]}, \ x_0^{[2]}, \ x_0^{[3]} \}$$

For simplicity, assume known heading

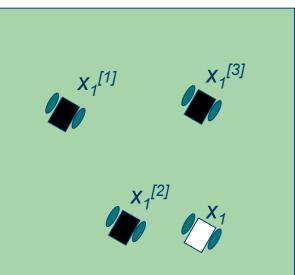


- The next few slides provide an example of one iteration of the algorithm, given X₀.
 - This iteration is for time step t_1 .
 - The inputs are the measurement z_1 , odometry o_1



- For Time step t_1 :
 - Randomly generate new states by propagating previous states X_0 with o_1

$$X_1^{\text{Temp}} = \{X_1^{[1]}, X_1^{[2]}, X_1^{[3]}\}$$



- For Time step t_1 :
 - To get new states, use the motion model from lecture 3 to randomly generate new state $x_1^{[i]}$.
 - Recall that given some Δs_r and Δs_l we can calculate the robot state in global coordinates:

 $\Delta x = \Delta s \cos(\theta + \Delta \theta / 2)$

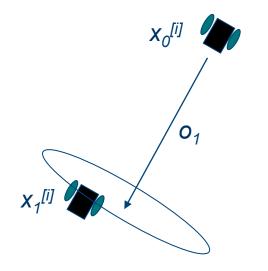
$$\Delta y = \Delta s \sin(\theta + \Delta \theta / 2)$$

$$\Delta \theta = \frac{\Delta s_r - \Delta s_l}{b}$$
$$\Delta s = \frac{\Delta s_r + \Delta s_l}{2}$$

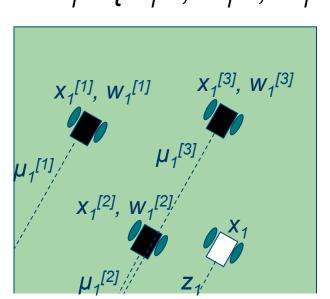
- For Time step t_1 :
 - So, if you add some random errors ε_r and ε_l to Δs_r and Δs_l , you can generate a new random state that follows the probability distribution dictated by the motion model.
 - So, in the prediction step of the PF, the *i*th particle can be randomly propagated forward using measured odometry $o_1 = \{\Delta s_r, \Delta s_l\}$ according to:

 $\Delta s_r^{[i]} = \text{rand}(\text{`norm'}, \Delta s_r, \sigma_s)$ $\Delta s_r^{[i]} = \text{rand}(\text{`norm'}, \Delta s_l, \sigma_s)$

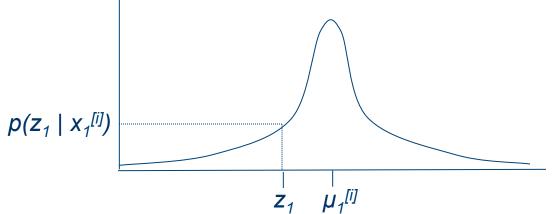
- For Time step t_1 :
 - For example:



- For Time step t_1 :
 - Using the measurement z_1 , calculate the expected weights $w^{[i]} = p(z_1 | x_1^{[i]})$ for each state. $W_1 = \{w_1^{[1]}, w_1^{[2]}, w_1^{[3]}\}$

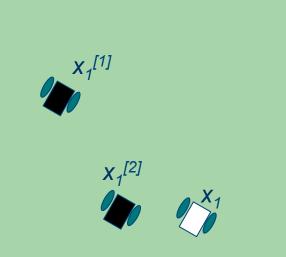


- For Time step t_1 :
 - To calculate $p(z_1 | x_1^{[i]})$ we use the sensor probability distribution of a single Gaussian of mean $\mu_1^{[i]}$ that is the expected range for the particle
 - The gaussian variance can be taken from sensor data. $P(\mu_1^{[i]})$



- For Time step t_1 :
 - Resample from the temporary state distribution based on the weights $w_1^{[2]} > w_1^{[1]} > w_1^{[3]}$

$$X_{1} = \{ X_{1}^{[2]}, X_{1}^{[2]}, X_{1}^{[1]} \}$$

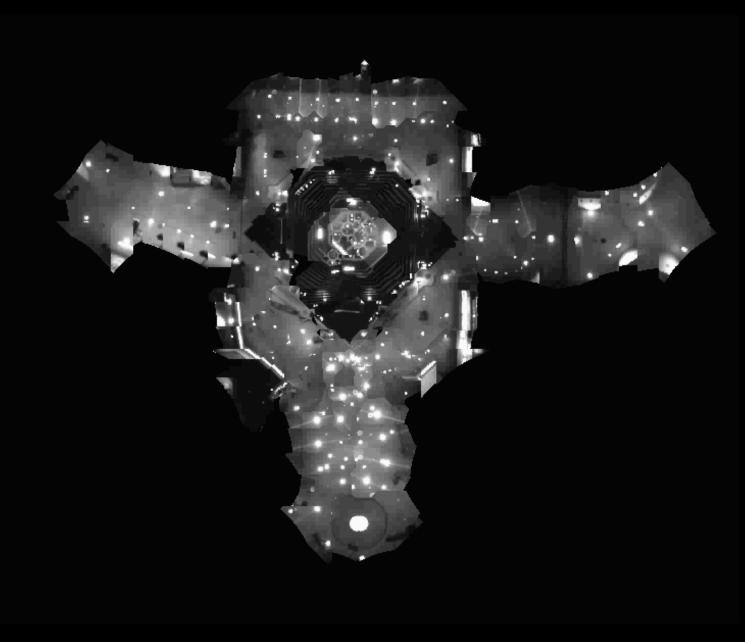


- For Time step t_2 :
 - Iterate on previous steps to update state belief at time step t_2 given (X_1 , o_2 , z_2).

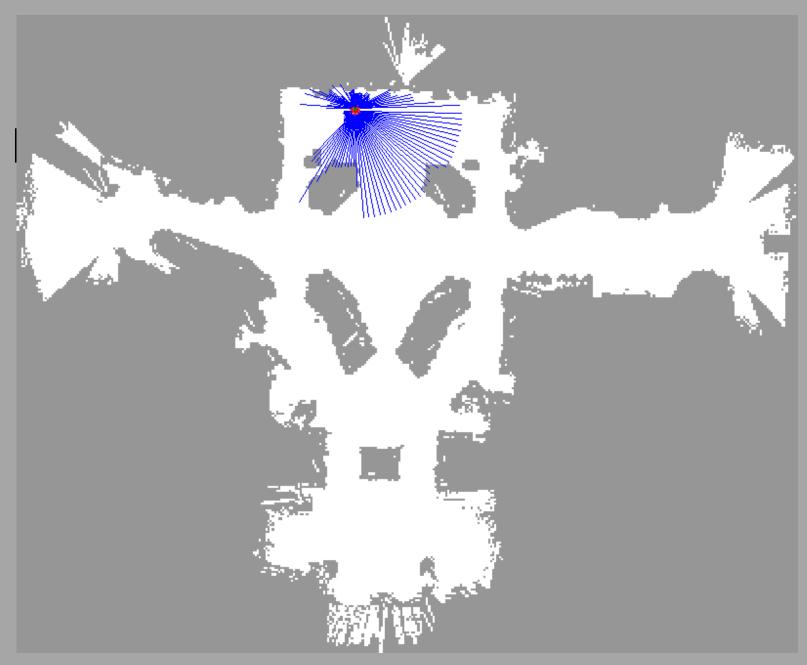
Particle Filter Localization: Outline

1. Particle Filters

- 1. What are particles?
- 2. Algorithm Overview
- 3. Algorithm Example
- 2. PFL Application Example



Courtesy of S. Thrun



Courtesy of S. Thrun