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COS 495 - Lecture 15 
Autonomous Robot Navigation 

Instructor: Chris Clark 
Semester: Fall 2011 

Figures courtesy of Siegwart & Nourbakhsh 



2 

Control Structure 

Perception 

Localization Cognition 

Motion Control 

Prior Knowledge Operator Commands 
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Particle Filter Localization: Outline 

1.  Particle Filters 
1.  What are particles? 
2.  Algorithm Overview 
3.  Algorithm Example 

2.  PFL Application Example 
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What is a particle? 

§  Like Markov localization, Particle Filters 
represent the belief state with a set of possible 
states, and assigning a probability of being in 
each of the possible states. 

§  Unlike Markov localization, the set of possible 
states are not constructed by discretizing the 
configuration space, they are a randomly 
generated set of “particles”.  
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What is a particle? 

§  A particle is an individual state estimate. 
§  A particle is defined by its:  

1.  State values that determine its location in the 
configuration space, e.g. [x y θ] 

2.  A probability that indicates it’s likelihood. 
§  Particle filters use many particles to for 

representing the belief state. 
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What is a particle? 

§  Example: 
§  A Particle filter uses 3 particles to represent the 

position of a (white) robot in a square room. 
§  If the robot has a perfect compass, each particle is 

described as: 
  x[1] = [x1 y1] 
  x[2] = [x2 y2] 
  x[3] = [x3 y3] 

x[1] 

x[2] 

x[3] 

x0 
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What is a particle? 

§  Example: 
§  Each of the particles x[1], x[2], x[3] also have 

 associated weights w[1], w[2], w[3]. 

§  In the example below, x[2] should have the highest 
weight if the filter is working. 

x[1] 

x[2] 

x[3] 

x0 
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What is a particle? 

§  The user can choose how many particles to 
use: 
§  More particles ensures a higher likelihood of 

converging to the correct belief state 
§  Fewer particles may be necessary to ensure real-

time implementation 
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Particle Filter Localization: Outline 

1.  Particle Filters 
1.  What are particles? 
2.  Algorithm Overview 
3.  Algorithm Example 

2.  PFL Application Example 
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Markov Localization 
Particle Filter 

§  Algorithm (Initialize at t=0): 
§  Randomly draw N states in the work space and add 

them to the set X0. 
§  Iterate on these N states over time (see next slide). 



11 

Markov Localization 
Particle Filter 

§  Algorithm (Loop over time step t): 

1.  For i = 1 … N 
2.      Pick xt-1

[i] from Xt-1 

3.      Draw xt
[i] with probability p( xt

[i] | xt-1
[i] , ot) 

4.      Calculate wt
[i] = p( zt | xt

[i] ) 
5.      Add xt

[i] to Xt
Temp 

6.  For j = 1 … N 
7.      Draw xt

[j] from Xt
Temp with probability wt

[j]  
8.      Add xt

[i] to Xt 

Prediction 

Correction 
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Particle Filter Localization: Outline 

1.  Particle Filters 
1.  What are particles? 
2.  Algorithm Overview 
3.  Algorithm Example 

2.  PFL Application Example 
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Particle Filter Example 

§  Provided is an example where a robot 
(depicted below), starts at some unknown 
location in the bounded workspace. 

x0 
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Particle Filter Example 

§  At time step t0: 
§  We randomly pick N=3 states represented as  

X0 ={x0
[1], x0

[2], x0
[3]} 

§  For simplicity, assume known heading 

x0
[1] 

x0
[2] 

x0
[3] 

x0 
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Particle Filter Example 

§  The next few slides provide an example of 
one iteration of the algorithm, given X0. 
§  This iteration is for time step t1. 
§  The inputs are the measurement z1, odometry o1 

x0
[1] 

x0
[2] 

x0
[3] 

x0 
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Particle Filter Example 

§  For Time step t1: 
§  Randomly generate new states by propagating 

previous states X0 with o1 

                        X1
 Temp ={x1

[1], x1
[2], x1

[3]} 

x1
[1] 

x1
[2] 

x1
[3] 

x1 



17 

 
Particle Filter Example 

§  For Time step t1: 
§  To get new states, use the motion model from 

lecture 3 to randomly generate new state x1
[i]. 

§  Recall that given some Δsr and Δsl we can 
calculate the robot state in global coordinates: 
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Particle Filter Example 

§  For Time step t1: 
§  So, if you add some random errors εr and εl to Δsr 

and Δsl, you can generate a new random state that 
follows the probability distribution dictated by the 
motion model.  

§  So, in the prediction step of the PF, the ith particle 
can be randomly propagated forward using 
measured odometry o1 = {Δsr, Δsl} according to: 
        Δsr

[i]= rand(‘norm’, Δsr , σs )  
            Δsl

[i]
 = rand(‘norm’, Δsl , σs )   
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Particle Filter Example 

§  For Time step t1: 
§  For example:  

x0
[i] 

x1
[i] 

o1
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Particle Filter Example 

§  For Time step t1: 
§  Using the measurement z1, calculate the expected 

weights w[i]
 = p( z1 | x1

[i] ) for each state. 

                        W1
 = {w1

[1], w1
[2], w1

[3]} 

x1
[1], w1

[1] 

x1 

x1
[3], w1

[3] 

x1
[2], w1

[2] 

µ1
[1] µ1

[3] 

µ1
[2] z1 
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Particle Filter Example 

§  For Time step t1: 
§  To calculate p( z1 | x1

[i] ) we use the sensor 
probability distribution of a single Gaussian of 
mean µ1

[i] that is the expected range for the particle 
§  The gaussian variance can be taken from sensor 

data. 

µ1
[i] z1 

P(µ1
[i]) 

p(z1 | x1
[i]) 
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Particle Filter Example 

§  For Time step t1: 
§  Resample from the temporary state distribution 

based on the weights w1
[2] > w1

[1] > w1
[3] 

                        X1 ={x1
[2], x1

[2], x1
[1]} 

x1
[1] 

x1 

x1
[2] 



23 

 
Particle Filter Example 

§  For Time step t2: 
§  Iterate on previous steps to update state belief at 

time step t2 given (X1, o2, z2). 
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Particle Filter Localization: Outline 

1.  Particle Filters 
1.  What are particles? 
2.  Algorithm Overview 
3.  Algorithm Example 

2.  PFL Application Example 
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Markov Localization 

Courtesy of S. Thrun 
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Markov Localization 

Courtesy of S. Thrun 


