COS 495 - Lecture 14
Autonomous Robot Navigation

Instructor: Chris Clark
Semester: Fall 2011

Figures courtesy of Siegwart & Nourbakhsh
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Markov Localization

» Markov localization uses an explicit, discrete
representation for the probability of all positions
In the state space.

= Usually represent the environment by a finite
number of (states) positions:
= Grid
» Topological Map

= At each iteration, the probability of each state
of the entire space is updated



Markov Localization
Grid Based Example

» Use a fixed x=[xy6]
decomposition grid by
discretizing each dof:

(X, ¥, 6)

= For each location
x; =[xy 0]in the

-l e e

V. A

=

configuration space: 0

» Determine probability
P(x;) of robot being in
that state.

(0.0.0)

Courtesy of
W. Burgard



Markov Localization

= We assume in localization the Markov Property
holds true...

= Markov Property
= aka memorylessness,

= A stochastic Process satisfies the Markov Property
if it is conditional only on the present state of the
system, and its future and past are independent



Markov Localization

» Algorithm PseudoCode to update all n states

fori=1:n
P(x;) = 1/n

while (true)
o = getOdometryMeasurements
z = getRangeMeasurements
fori=1:n
P(x;" ) = predictionStep(P(x)), 0)
fori=1:n
P(x;) = correctionStep(P(x;’), z)



Markov Localization
Applying Probability Theory

1. PREDICTION Step: Updating the belief state
P(X’i,J = f (Xt | 0y

=j§ P (Xi,l‘ | Xj,l‘-'l ) Ot) P (Xj,l‘-1)

= Map from a belief state P (x;, , ) and action o, to a
new predicted belief state P (X'i¢)

= Sum over all possible ways (i.e. from all states x;, ;)
in which the robot may have reached x”;,

= This assumes that update only depends on previous
state and most recent actions/perception



Markov Localization
Grid Based Example

= Example Problem:

= Consider a robot equipped with encoders and a
perfect compass moving in a square room that is
discretized into a map of 16 cells:
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= Example Problem:

» What is the probability of being in position (2,3)
given odometry o, = (Ax,Ay) = (-1.0 cells,0.0 cells),
and starting from the following distribution?

Markov Localization
Grid Based Example
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Markov Localization
Grid Based Example

= Example Solution:

» We must have a model of how well our odometry

works. For example, we could use a model for o, =
(Ax,Ay) = (-1.0,0.0) that looks like:

.00 .00/|.00
.00 .00
.00 .00/|.00

(Ax,Ay)
—)>
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Markov Localization
Grid Based Example

= Example Solution:

= Now apply this model to the initial state. We must
consider the following possible scenarios for
getting to position (2,3):
" (3,3) = (2,3)
" (2,3) = (2,3)
" (3,2) > (23) 4

= (3,4) > (2,3 '\
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Markov Localization
Grid Based Example

= Example Solution:

= Consider the first possibility:
" (3,3) > (23)
= We can calculate the probability of this happening

P (x| Xit-15 o) P (Xj,t-1)
=P (x=(2,3) | x.4=(3,3), 0=(-1,0) ) P(x.,=(3,3))
= (0.5) (0.18)
=0.09 015

«
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Markov Localization
Grid Based Example

= Example Solution:

= Similarly, we can calculate the probability of all other
possible ways to get to (2,3).
P(x=(2,3) | x.4=(2,3), 0,=(-1,0) ) P(x¢4=(23))
= 0.005
P(x=(2,3) | x.4=(3,2) , 07=(-1,0) ) P(xt4=(3,2))
=0.036
P(x=(2,3) | x.4=(3,4), 0/=(-1,0) ) P(x¢4=(3,4))
=0.01
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Markov Localization
Grid Based Example

= Example Solution:

= So the probability of being at position (2,3) given the
odometry is the total probability of moving there from
each possible position:

P=(2.3) 07(-1,0) =2 P(x7(2.3)| X4y, 07(-1,0) P(X,.)
=0.09 + 0.005 + 0.036 + 0.01
= 0.141
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Markov Localization
Applying Probability Theory

2. CORRECTION Step: refine the belief state
P(x; | z) = P(z;| x';;) P(x";¢)
P(z)

= P(x’;;): the belief state before the perceptual
update i.e. P( x;;| o;)

= P(z|x’;;):the probability of getting measurement
z, from state x’,

= P(z):the probability of a sensor measurement z,.

Calculated so that the sum over all states x;; from

equals 1.
T: :



Markov Localization

» Critical challenge is calculation of P(z | x )

* The number of possible sensor readings and
geometric contexts is extremely large

= P(z|x)is computed using a model of the robot’ s
sensor behavior, its position x, and the local
environment metric map around x.

= Assumptions

= Measurement error can be described by a distribution with
a mean

= Non-zero chance for any measurement
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Markov Localization
Grid Based Example

= Example Problem:

= What is the probability of being in state x= (2,3)
given we have range measurement z=1.2m ?

P(x, = (2,3))| z,=1.2)
= P(z=1.2] x’=(2,3)) P(x =(2,3))
P(z,=1.2)
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Markov Localization
Grid Based Example

= Example Solution:

* We can use the probability P(x’ =(2,3)) = 0.141 from
the previous example.

» The interesting term is P(z=1.2| x’ =(2,3)).
= Using the map, we can calculate the expected value of the
range sensor measurement.

= [fthe robot is at (2,3) and facing to the left, it should get a
range measurement of 1m.

» Recall that we can use the probability density function
representing the sensor characteristics, and that the expected
value is



Markov Localization
Grid Based Example

= Example Solution:

» For Ultrasound, P(z|x) can be taken from the
following distribution:

P(x)
0.10 —
0.05 — A
J ¥ X
0.00 150
1.00

20 P(z|x) = 0.04



Markov Localization
Grid Based Example

= Example Solution:

= Now we can calculate the numerator for
p (x;=(2,3)| z;=1.2)

= p(z=1.21 x'=(2,3)) p (x'=(2,3))

p(z,=12)
= (0.04) (0.141)
p(z=12)
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Markov Localization
Grid Based Example

= Example Solution:

= Finally, we can calculate the denominator by
ensuring the sum of all probabilities is 1.

1=2 P(x;,| =12
i=1

= ZP(Zt=12| X’i,l‘) P(X’i,y
P(z,=1.2)

Therefore:
P(z,=1.2) =2 P(z=1.2| x",) P(x’;)
22



Markov Localization
Grid Based Example

* Here are some typical sensor distributions:
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23 Ultrasound. Laser range-finder.



Markov Localization: Outline

1. Markov Localization Algorithm

1. Overview
2. Prediction Step
3. Correction Step

2. ML Example
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Markov Localization: Outline

= Markov Localization Example

= Time steps taken from ML example
of the robot Minerva navigating
around the Smithsonian.

* |n the following figures:

= | eft side shows belief state. Darker
means higher probability.

= Right side shows actual robot position
and sensor measurements.



Markov Localization
Grid Based Example

= [aser Scan 1 of Museum

N

Figures courtesy of W. Burgard
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Markov Localization
Grid Based Example

= [aser Scan 2 of Museum

Figures courtesy of W. Burgard
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Markov Localization
Grid Based Example

= [aser Scan 3 of Museum
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Figures courtesy of W. Burgard
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Markov Localization
Grid Based Example

= [aser Scan 13 of Museum

Figures courtesy of W. Burgard
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Markov Localization
Grid Based Example

= Laser Scan 21 of Museum

Figures courtesy of W. Burgard
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