

COS 495 - Lecture 14 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Fall 2011

Figures courtesy of Siegwart & Nourbakhsh

Control Structure

Outline

1. Markov Localization Algorithm

- 1. Overview
- 2. Prediction Step
- 3. Correction Step
- 2. ML Example

Markov Localization

- Markov localization uses an explicit, discrete representation for the probability of all positions in the state space.
- Usually represent the environment by a finite number of (states) positions:
 - Grid
 - Topological Map
- At each iteration, the probability of each state of the entire space is updated

 Use a fixed decomposition grid by discretizing each dof:

(x, y, θ)

- For each location
 x_i = [x y θ] in the configuration space:
- Determine probability $P(x_i)$ of robot being in that state.

Markov Localization

- We assume in localization the Markov Property holds true...
- Markov Property
 - aka memorylessness,
 - A stochastic Process satisfies the Markov Property if it is conditional only on the present state of the system, and its future and past are independent

Markov Localization

Algorithm PseudoCode to update all n states

for i = 1:n $P(x_i) = 1/n$

while (true)

- *o* = getOdometryMeasurements
- z = getRangeMeasurements
- for i = 1:n
 - $P(x_i') = \text{predictionStep}(P(x_i), o)$
- for *i* = 1:*n*
 - $P(x_i) = \text{correctionStep}(P(x_i'), z)$

Markov Localization Applying Probability Theory

1. PREDICTION Step: Updating the belief state $P(x'_{i,t}) = P(x_{i,t} | o_t)$ $= \sum_{j=1}^{n} P(x_{i,t} | x_{j,t-1}, o_t) P(x_{j,t-1})$

- Map from a belief state $P(x_{j,t-1})$ and action o_t to a new predicted belief state $P(x'_{i,t})$
- Sum over all possible ways (i.e. from all states x_{j,t-1}) in which the robot may have reached x'_{i,t}
- This assumes that update only depends on previous state and most recent actions/perception

- Example Problem:
 - Consider a robot equipped with encoders and a perfect compass moving in a square room that is discretized into a map of 16 cells:

- Example Problem:
 - What is the probability of being in position (2,3) given odometry $o_t = (\Delta x, \Delta y) = (-1.0 \text{ cells}, 0.0 \text{ cells})$, and starting from the following distribution?

.02	.05	.05	.05
.02	.05	.18	.05
.05	.05	.18	.05
.05	.05	.05	.05

- Example Solution:
 - We must have a model of how well our odometry works. For example, we could use a model for o_t = (Δx,Δy) = (-1.0,0.0) that looks like:

Example Solution:

 Now apply this model to the initial state. We must consider the following possible scenarios for getting to position (2,3):

- $(2,3) \rightarrow (2,3)$
- $(3,2) \rightarrow (2,3)$
- (3,4) → (2,3)

18

- Example Solution:
 - Consider the first possibility:
 - (3,3) → (2,3)
 - We can calculate the probability of this happening

$$P(x_{i,t} | x_{j,t-1}, o_t) P(x_{j,t-1})$$

= P(x_t=(2,3) | x_{t-1}=(3,3), o_t=(-1,0)) P(x_{t-1}=(3,3))
= (0.5) (0.18)
= 0.09

Example Solution:

 Similarly, we can calculate the probability of all other possible ways to get to (2,3).

$$P(x_t = (2,3) \mid x_{t-1} = (2,3), o_t = (-1,0)) P(x_{t-1} = (2,3))$$

= 0.005

- $P(x_t = (2,3) \mid x_{t-1} = (3,2), o_t = (-1,0)) P(x_{t-1} = (3,2))$ = 0.036
- $P(x_t = (2,3) \mid x_{t-1} = (3,4), o_t = (-1,0)) P(x_{t-1} = (3,4))$ = 0.01

- Example Solution:
 - So the probability of being at position (2,3) given the odometry is the total probability of moving there from each possible position:

$$P(x_{it}=(2,3)| o_t=(-1,0)) = \sum P(x_t=(2,3)| x_{j,t-1}, o_t=(-1,0)) P(x_{j,t-1})$$

= 0.09 + 0.005 + 0.036 + 0.01
= 0.141

Markov Localization Applying Probability Theory

- 2. CORRECTION Step: refine the belief state $P(x_{i,t} | z_t) = \frac{P(z_t | x'_{i,t}) P(x'_{i,t})}{P(z_t)}$
 - $P(x'_{i,t})$: the belief state before the perceptual update i.e. $P(x_{i,t} | o_t)$
 - $P(z_t | x'_{i,t})$: the probability of getting measurement z_t from state x'_t
 - $P(z_t)$: the probability of a sensor measurement z_t . Calculated so that the sum over all states $x_{i,t}$ from equals 1.

Markov Localization

- Critical challenge is calculation of P(z | x)
 - The number of possible sensor readings and geometric contexts is extremely large
 - P(z | x) is computed using a model of the robot's sensor behavior, its position x, and the local environment metric map around x.
 - Assumptions
 - Measurement error can be described by a distribution with a mean
 - Non-zero chance for any measurement

- Example Problem:
 - What is the probability of being in state x= (2,3) given we have range measurement z=1.2m ?

$$P(x_{t} = (2,3)) | z_{t} = 1.2)$$

$$= \frac{P(z_{t} = 1.2 | x'_{t} = (2,3)) P(x'_{t} = (2,3))}{P(z_{t} = 1.2)}$$

- Example Solution:
 - We can use the probability P(x'_t=(2,3)) = 0.141 from the previous example.
 - The interesting term is $P(z_t=1.2 | x'_t=(2,3))$.
 - Using the map, we can calculate the expected value of the range sensor measurement.
 - If the robot is at (2,3) and facing to the left, it should get a range measurement of 1m.
 - Recall that we can use the probability density function representing the sensor characteristics, and that the expected value is

- Example Solution:
 - For Ultrasound, P(z|x) can be taken from the following distribution:

- Example Solution:
 - Now we can calculate the numerator for

 $p(x_t = (2,3))|z_t = 1.2)$

$$= \frac{p(z_t=1.2 | x'_t=(2,3)) p(x'_t=(2,3))}{p(z_t=1.2)}$$

=
$$\frac{(0.04) (0.141)}{p(z_t=1.2)}$$

- Example Solution:
 - Finally, we can calculate the denominator by ensuring the sum of all probabilities is 1.

$$1 = \sum_{i=1}^{n} P(x_{i,t} | z_t = 1.2)$$

=
$$\frac{\sum P(z_t = 1.2 | x'_{i,t}) P(x'_{i,t})}{P(z_t = 1.2)}$$

Therefore:

$$P(z_t = 1.2) = \sum P(z_t = 1.2 | x'_{i,t}) P(x'_{i,t})$$

Here are some typical sensor distributions:

Ultrasound.

Laser range-finder.

Markov Localization: Outline

- 1. Markov Localization Algorithm
 - 1. Overview
 - 2. Prediction Step
 - 3. Correction Step

2. ML Example

Markov Localization: Outline

- Markov Localization Example
 - Time steps taken from ML example of the robot Minerva navigating around the Smithsonian.
 - In the following figures:
 - Left side shows belief state. Darker means higher probability.
 - Right side shows actual robot position and sensor measurements.

Laser Scan 1 of Museum

Laser Scan 2 of Museum

Laser Scan 3 of Museum

Laser Scan 13 of Museum

Laser Scan 21 of Museum

