
COS 495 – Autonomous Robot Navigation

Lab 8

Probabilistic Road Map (PRM)
Motion Planning

INTRODUCTION
Given a robot’s location in a known environment, a motion planning algorithm can be
used to construct a collision-free trajectory that connects a start configuration to a goal
configuration. Then, the robot can follow the trajectory to safely arrive at the goal
location.

In this lab, you will implement a single-query Probabilistic Road Map (PRM) motion
planning algorithm. At a high level, the algorithm generates a randomly expanding
roadmap, consisting of nodes and edges to connect the start and goal configurations.
More specifically, the algorithm roots the road map with a node at the start
configuration, then randomly expands the road map by adding new edges and nodes
until one of the new nodes has a collision-free edge connecting it to the goal
configuration.

BACKGROUND
An example single-query PRM algorithm is:

1. Add start configuration cstart to R(N,E)
2. Loop
3. Randomly Select New Node c to expand
4. Randomly Generate new Node c’ from c
5. If edge e from c to c’ is collision-free
6. Add (c’, e) to R
7. If c’ belongs to endgame region, return path
8. Return if stopping criteria is met

The key steps are step 3, 4 and 7. To save time, Kindel et. al.’s grid cell based weighted
sampling scheme has been coded for you to help in step 3. For step 5 and 7, a collision-
checking algorithm has been coded for you.

HINT: For debugging the motion planner, set the estimated states to exactly equal the
actual states in simulator mode (e.g. x_est = x). This way you won’t deal with any
residual localization problems.

EXPERIMENTS
Download the most recent version of the base code for lab 5. The main control loop
Robot :: RunControlLoop(CWiRobotSDK* m_MOTSDK_rob) in Robot.cpp now contains the
following functions:

 // Localize
 MotionPrediction(m_MOTSDK_rob);
 LocalizeRealStateWithOdometry(m_MOTSDK_rob);
 LocalizeEstStateWithParticleFilter(m_MOTSDK_rob);

 // If using the point tracker, call the function
 if (controllerType == CONTROLLERTYPE_POINTTRACKER)
 {

 // Check if we need to create a new trajectory
 if (motionPlanRequired){
 MotionPlanner(m_MOTSDK_rob);
 motionPlanRequired = false;
 }

 // Follow the trajectory
 TrackTrajectory(m_MOTSDK_rob);

 }

As in lab 4, the localization is done in 3 functions. We use the function
LocalizeRealStateWithOdometry to determine the actual state [x y t] of the robot in
simulations. Make sure that x, y, and t are set in this function.

To estimate what this actual position is, we use a particle filter localization algorithm
with known start location. This will be implemented in the function
LocalizeEstStateWithParticleFilter. Make sure that you set x_est, y_est, and
t_est in this function.

Make sure to remember your wall distance checking code from Map.cpp. Note that your
trajectory tracking code isn’t required but your point tracking code is required. **Copy
all code for these functions from the previous lab 4 to your new lab 5 code. **

When a user presses the Track Point button, the controller type is set to
CONTROLLERTYPE_POINTTRACKER and sets the motionPlanRequired flag to true. The main
control loop will then call the MotionPlanner function once and set the
motionPlanRequired flag to false.

Once a trajectory is constructed by the MotionPlanner function, the TrackTrajectory
function will set the desired points to be tracked by the point tracker to be those nodes
of the newly constructed trajectory.

**Use all code for point tracking from the previous labs to your new lab 8 code.

For this lab, the code you will modify is located in Robot.cpp:

1. Create the start and goal nodes
Using the constructor Node(double x, double y, int nodeIndex, int lastNode),
create start and goal nodes in the MotionPlanner function. The position of the nodes
should be (x_est, y_est) and (x_goal, y_goal) respectively. Set the nodeIndex and
lastNode values to 0. These are used later when constructing the trajectory from the
PRM.

Use the AddNode function to add the start node to the PRM.

2. Random Node Selection
A while loop has been created for you that iterates over possible node expansions.
This loop will terminate if the maximum number of iterations is exceeded, or a path
was found, (i.e. the PRM successfully connected to the goal node).

Within the while loop, the first step is the random selection of a node to expand from.
First, randomly select a cell from all those occupied cells. Use the variable
numOccupiedCells, and pick an integer randCellNumber between 0 and
numOccupiedCells.

Next, randomly pick a node within the cell. Use the variable numNodesInCell, and
pick an integer randNodeNumber between 0 and
numNodesInCell[occupiedCellsList[randCellNumber]].

The node NodesInCells[occupiedCellsList[randCellNumber]][randNodeNumber]is
your randomly selected node. Name it randExpansionNode. This is the node you can
expand from!

3. Node Expansion
For the node expansion, we will use straight line segments. That is, all edges in the
PRM will be straight, thereby ignoring and dynamic or kinematic constraints.

First, randomly select a distance and orientation. You can play with the ranges of
these random numbers later and see how they affect planner performance.

Figure 1: Random expansion to create a new node

Use the distance and orientation, along with the position of the parent node
(randExpansionNode.x, randExpansionNode.y) to determine the location of the new
node newX and newY. Using the Node constructor, create the newNode with this
position. Set the nodeIndex to be the numNodes, and the lastNode to be the
nodeIndex of the parent node.

4. Add new node to PRM
Create an if statement that calls robotMap.CollisionFound(Node n1, Node n2,
double tol) to determine if the edge connecting the newNode to its parent is
collision-free. The variable tol is short for tolerance, the allowable distance between
the center of the robot and the wall, (perhaps robotWidth/2).

If no collision was found, add the newNode to the PRM using AddNode().

5. Check for connection to goal
After adding the newNode to the PRM, check if the new node connects to the goal
node using the collision checker again. If there is no collision between newNode and
goalNode, then set the goalNode.nodeIndex to numNodes and set the
goalNode.lastNode to be the parent’s nodeIndex. Finally, add the goalNode to the
PRM and set the pathFound flag to be true. Setting this flag will terminate the while
loop.

REMOVE the forward slashes “//” to uncomment the BuildTraj(goalNode); call!

orientation

distance

randExpansionNode

newNode

6. Optimize Trajectory Tracker (Optional)
At this point, test your planner on many start/goal locations. Enter a desired goal
location in the Point Tracker text boxes, and then click Track Point. You should see
the trajectory connect your estimated position with the goal point on the screen. If
the screen fills up with red lines, your planner didn’t find a solution (maybe your goal
destination is on a wall!) Once the trajectory is constructed, the robot will track each
node in the trajectory using your Trackpoint function.

Feel free to modify the planner for different orientation tracking schemes or ways to
follow edges. For example, one could implement a turn on the spot scheme at every
node so that the robot always faces towards the next node before following the edge
that connects the current and next nodes. Or, port your traj tracking code from the
previous lab 3.

Also, feel free to make several plans and pick the shortest plan before following it.
Another good idea is to check if the startnode directly connects with the goalnode.

DELIVERABLES

1. DEMO!!!
You must demo your working code to the instructor or TA by noon on Friday Dec.
16.

