
COA 495 – Autonomous Mobile Robots

Lab 7

Particle Filter Localization

INTRODUCTION
Determining a robots position in a global coordinate frame is one of the most important
and difficult problems to overcome in enabling mobile robots to navigate an environment
and carry out tasks autonomously. In lab 2, you used odometry for localization and saw
first hand how errors accumulate with distance travelled.

In this lab, you will implement a particle filter localization algorithm. At each iteration of
the algorithm, odometry is used to propagate the robot motion of every particle. Then
these particles are assigned weights based on how closely the current range sensor
measurements match with expected range measurements. The expected range
measurements are calculated using the propagated particle state and a map of the
environment. The particle distribution is then resampled based on the particle weights.

BACKGROUND
There are several steps to implement a particle filter localization algorithm, and this will
take quite a bit more time than previous labs. The algorithm is outlined in the slides for
Lecture #15. See Sebastian Thrun’s text Probabilistic Robotics for additional details.

EXPERIMENTS
Note, build from your base code for lab 6. All coding for steps 1 through 2 will occur
within the file Map.cpp. Remaining steps require modification of the file Robot.cpp. You
will need to use your odometry localization code and point tracking code from previous
labs. You can leave out the trajectory tracking code for now.

The main control loop Robot :: RunControlLoop(CWiRobotSDK* m_MOTSDK_rob)

calls three localization functions:

 // Localize
 MotionPrediction(m_MOTSDK_rob);
 LocalizeRealStateWithOdometry(m_MOTSDK_rob);
 LocalizeEstStateWithParticleFilter(m_MOTSDK_rob);

At this point of the course, we will use the function LocalizeRealStateWithOdometry to
determine the actual state [x y t] of the robot in simulations. Make sure that x, y,
and t are set in this function.

To estimate what this actual position is, we use a particle filter localization algorithm.
This will be implemented in the function LocalizeEstStateWithParticleFilter. Make
sure that you set x_est, y_est, and t_est in this function.

First, let’s get some simple geometry done within Map.cpp:

1. Determine the distance to a wall
Using geometry, you need to calculate the distance to a wall using the range
sensors. You will need to modify the function Map :: GetWallDistance(double x,
double y, double t, int segment). The x, y variables are the position of the
robot, and t is the orientation of the sensor wrt the global coordinate frame.

In this function, you must calculate the expected range measurement d from a robot
sensor to a wall. The wall is defined by a line segment with two endpoints [X1 Y1],
[X2 Y2].

Figure 1: Calculating the distance to a wall segment

An easy way to do this is to calculate the point of intersection between the line
segment and the ray cast by the range sensor transmission signal. This assumes
the sensor transmits a linear signal with no energy dissipation.

Next calculate the distance between the point of intersection and the robot. Make
sure that a point of intersection actually exists.

Note that the variables slopes, intercepts, and segmentSizes for each segment
are calculated for you in the Map constructor. These may be useful.

2. Determine the distance to closest wall
This function will return the shortest measurement that a range sensor should
receive given the environment map. Within this function, loop through all wall
segments to find the closest segment by calling the function Map ::
GetWallDistance(double x, double y, double t, int segment).

x, y

t

d

Wall segment
of interest

X1 Y1 X2 Y2

This function will be called from two other functions. First, the robot simulator will call
GetClosestWallDistance to determine what the sensor measurements would be
given the current state and the environment. Second, the function will be used by
your particle filter to determine expected measurements for particular particle
locations.

Beware that this function returns the ranges from the center of the robot. The
simulator will subtract off the distance between the sensor and the middle of the
robot. You can set these distances sonarRadius and IRRadius in Robot.h. Also, the
simulator will limit the measurements to ensure they are within the min/max values
of the real sensors (e.g. for IR range sensors between 10 and 70 cm). These limits
are also set in Robot.h.

Drive the robot around the simulated environment to ensure that the range
measurements in your dialogue window make sense. Your code is linked to the text
boxes on the dialogue window so that in simulator mode, they range measurements
for each sensor should appear in real time.

3. Create an initial set of particles
When the object Robot is constructed, it calls a function void Robot ::
InitializeParticles(). This function will iterate on all particles and initialize their
states using either of the two functions:

 SetRandomPos(i);
 //SetStartPos(i);

Within void Robot :: SetRandomPos(int p), set the position of particle p to be
some random location within the boundaries of the environment. Feel free to make
use of the rand() function, and variables like robotMap.maxX, robotMap.minX that
are set in the Map constructor. Note that in Robot.h, the number of particles is
defined as numParticles.

4. Propagate particles
The correction step within the particle filter is accomplished by propagating particles
forward based on odometry. Within LocalizeEstStateWithParticleFilter, create a
loop that iterates on all particles.

At each iteration of the loop, use the previous state of the particle [particles[i].x
particles[i].y particles[i].t], the odometry [wheelDistanceR wheelDistanceL]
along with some randomness in each wheel’s distance travelled, to determine the
new state of the particle [propagatedParticles[i].x propagatedParticles[i].y
propagatedParticles[i].t]. Then call the function CalculateWeight(int p) to
calculate the weight of the particle.

5. Weight the particles
Within the function CalculateWeight(int p), compare any of the range
measurements [sonar1, sonar2, sonar3, IR1, IR2, IR3, IR4, IR5, IR6, IR7] to
expected range measurements given particle p’s state within the map. Use this
comparison to calculate the weight of the particle, propagatedParticles[p].w. You
will need the function GetClosestWallDistance that you created before.

6. Resample the particles
Once the set of propagated particles propagatedParticles have been created and
weighted, you can create an updated set of particles particles. This should be done
after the correction step in LocalizeEstStateWithParticleFilter. This resampling
can be accomplished by randomly selecting particles from propagatedParticles with
increased likelihood of selection given to those particles with high weights.

7. Calculate the state estimate
At the end of LocalizeEstStateWithParticleFilter, determine the state estimate
[x_est y_est t_est] by taking the average of all particle states.

8. Known start position simulations
Use the InitializeParticles() function to initialize all particles at the known start
position at [0 0 0]. Drive the robot around the simulated environment. Tune your
Particle Filter parameters so that the estimated state matches the actual robot state.
Make sure your point tracker works.

9. Unknown start position simulations
Use the InitializeParticles() function to initialize all particles at random start
positions. Drive the robot around the simulated environment. Tune your Particle
Filter parameters so that the estimated state converges to the actual robot state.

10. Hardware experiment
Develop a maze using hardware experiment that demonstrates how well your
particle filter localization algorithm works. You can use whatever configuration of
walls you wish, along with your choice of paths to follow.

DELIVERABLES

1. Demonstration
Before the end of the final day of this lab, Wed. Dec. 7th, you must demonstrate to
the TA or instructor that your PF localization algorithm is working properly. In both
simulation and X80 mode, the OpenGL window should show the actual robot states
and state estimates match.

Part of your will be based on performance: How well do state estimates match actual
robot position? How stable is the controller when using the PF state estimates for
feedback? Is the kidnapped robot problem solved?

2. Submissions
In a 5-10 page report, (similar format to lab 3), present your methods for PF
localization. Discuss any decisions you made in your algorithm design, E.g. your
sampling strategy, how you propagated states, what sensors you used for weight
calculations, how you picked your environment, etc. Provide plots and data tables
that demonstrate the performance of your algorithm in simulator mode. The report is
due via email or hardcopy to the instructor on Wed. Dec. 12th at midnight.

