
COS 495 – Autonomous Robot Navigation

Lab 6

Point Tracking

INTRODUCTION
Robots often need to move to a point with a desired orientation. This can be difficult
when the robot has nonholonomic constraints. The robot cannot simply move laterally,
making it difficult to come up with a controller using intuition.

The goal of this lab is to get students to implement a closed loop controller that will drive
the robot to any desired state (position and orientation). Odometry will be the sole
method used for estimating the robot’s state (i.e. localization).

BACKGROUND
As shown in class, a controller has been developed based on the following coordinate
transformation:

Once the new variables have been calculated, desired forward velocity v and desired
rotational velocity w can be calculated. Note control gains are defined in the Robot.h
header file.

Using v and w, we can determine the desired wheel velocities φ1 and φ2. The following
equations were derived and are used.

Recall that this controller works well if the goal point is in front of the robot, that is if α
lies between –π/2 and +π/2.

However if the goal is behind the robot, then modifications to the controller are required
to give shorter more direct paths involving the robot moving in reverse. That is, we first
redefine the transformation as:

We also redefine the control law to have the robot work in reverse.

Remember that when implementing this controller, make sure your robot never exceeds
the maximum allowable velocity of 10 cm/s, and that controller gains must satisfy the
following condition:

EXPERIMENTS
Note, use the most recent version of your code from lab 5. All coding for steps 1 through
5 will occur within the function Robot :: TrackPoint(CWiRobotSDK* m_MOTSDK_rob).
Recall that this function will be called for each iteration of the 20 Hz control loop. You
will need your odometry localization code from lab 4. You will not need any wall
positioning or odometry error characterization code.

1. Transform to new coordinate system
Using the robot state estimate [x_est y_est t_est], and the desired state [desiredX
desiredY desiredT], calculate the position of the robot relative to the goal position
Δx, Δy.

Now use the equations above to calculate the state [pho alpha beta] in the new
coordinate system. Remember to check if the goal is behind the robot and
recalculate the state if necessary.

It is often easiest to make sure that all angles lie within – π and π.

2. Calculate Wheel Velocities
Now that the transformation is complete, implement the control law to determine the
desired velocities desiredV and desiredW. You can experiment with different gains
later, but for now use Kpho, Kalpha, and Kbeta. Remember to reverse direction if
the goal is behind the robot.

From these you can calculate the desired wheel velocities desiredWheelSpeedL and
desiredWheelSpeedR.

Remember to convert these desired wheel velocites from m/s to encoder pulses /
second before sending them to the robot.

You can use the pointTracked variable to determine if the robot is close enough to
the desired state and should return to manual mode, or if the desired wheel
velocities should send the commands to the robot using the function:

m_MOTSDK_rob->DcMotorVelocityNonTimeCtrAll

Part of this is coded for you in the base code.

3. Track Desired Positions
After building and running the application, select Simulation mode. Try entering [1 0
0] in DesiredX, DesiredY, and DesiredT fields located under the Track Point button.
Click on the Track Point button. The robot should move forward 1m. Now try tracking
the point [0 0 0]. The robot should return to the origin.

Keep trying new points to track, making sure the robot always moves to the desired
locations. At this point the robot will always end with orientation 0 degrees.

4. Track desired positions and orientations
To make the robot track desired orientations, the state variable β must be modified
to include desiredT. Simply adding this to β will force the robot to track the desired
orientation, (See figure below).

Old Definition: New Definition

θdesired

Now test the controller for many desired position/orientation combinations in
Simulation mode.

5. Tracking points with the actual robot
Once you are confident the controller is working in Simulation mode, add some extra
code to make sure the robot will work with the controller.

First, do a check to make sure the robot is not moving faster than 10cm/s. Next, it
might be good to implement a simple P control for the case when the robot should
turn on the spot. Just use an “if” statement to determine if ρ is close to 0.

6. Tracking trajectories
Using the point tracker you just developed, implement a straight line trajectory
tracker that operates as follows:

When the Track Point button is pressed, the robot should follow a line that
connects its current position to the position described by desiredX and desiredY.
The desired orientation throughout the trajectory should be in the same direction
as the line.

For example, if the robot is at 0,0,0, and the desired position is 10,10, then the
desired trajectory might look something like in the figure below:

Think about whether your method word work with a curved trajectory since this might
be required later. Also try to make the robot follow the trajectory smoothly without
stopping and starting along the way.

To code this up, you can use the function Robot :: TrackTrajectory(CWiRobotSDK*
m_MOTSDK_rob) located in Robot.cpp. You will have to make sure the control thread calls
this function instead of Robot :: TrackPoint. I have also included several variables that
will be of use: x_start, y_start, x_goal, y_goal, t_goal. See how they are set in
the function CRoboticsLabDlg::OnTrackPoint().

[10 10 45]

Desired
Trajectory

Actual
Trajectory

[0 0 0]

DELIVERABLES

1. Demonstration
Before the end of the final day of this lab, you must demonstrate to the Professor
that your point tracker/trajectory tracker is working properly. In both simulation and
X80 mode, the OpenGL window should show the robot and estimate moving
towards desired goal states.

Part of your will be based on performance: How stable is the controller on the real
robot, how close does it come to desired states, etc. Demos are due Friday
Novemer 18th.

2. Submissions
In a 5-10 page report, (see Lab 3 for report format requirements), present your
method for tracking a straight line trajectory. Plot or sketch out some trajectory
results and discuss any pros or cons of your method. The report is due Friday
November 25th.

