
COS 495 – Autonomous Robot Navigation

Lab 5

Odometry

INTRODUCTION
Odometry is a useful method for predicting the position of a robot after it has moved.
The prediction is accomplished by counting the number of wheel revolutions that each
wheel rotated, then converting this to motion to coordinates a global coordinate frame.
Unfortunately, this method is prone to errors from slipping, and poor modeling of the
system (e.g. wheel dimensions).

This lab requires students to implement odometry in the X80, and characterize the types
of errors that can be encountered.

BACKGROUND
The encoders used on the X80 are called incremental encoders. They measure the
signal from photodetectors located on one side of a transparent disk. The disk rotates
around the motor shaft. Located on the other side of the disk are photoemitters. Printed
on the disk are tracks of black lines that shield detectors from emitters.

Figure 1: An incremental Encoder (from http://www.kavlico.com/index_home.html)

As the disk rotates, the output of the photodetectors oscillates between LOW and HI, as
shown in Fig. 1. By counting these signal changes, the amount of rotation can be
measured. The resolution of the measurement is dependent on the number of lines in
the grating.

Build from your lab 4 base code. The code to be modified is located in the file
Robot.cpp. Within this file there is function called from the main control thread. This
function, “Robot :: RunControlLoop”, is called at every time step of the thread.

To localize the robot, Robot :: RunControlLoop will call two functions that you will
modify. The first is called “Robot :: MotionPrediction”. The second is called “Robot ::
LocalizeRealStateWithOdometry”. You should comment out the call to “Robot ::
LocalizeEstStateWithParticleFilter”.

Within Robot :: MotionPrediction, you are required to calculate the
distanceTravelled and angleTravelled since the last time step. With these two
variables calculated, the new state x, y, t will be calculated in Robot ::
LocalizeRealStateWithOdometry.

Note that in this particular lab, we will set the actual state x, y, t to be the same as the
estimated state x_est, y_est, t_est. The OpenGL window will display the robot at the
actual state and display a blue arrow at the estimated state.

EXPERIMENTS

1. Read the Sensors
The X80 uses two encoders, one located on each wheel to measure the wheel
distances. To access the measurements, the following function is used.

m_MOTSDK_rob->GetEncoderPulse1()

Use this function to set the variables currentEncoderPulse1 and
currentEncoderPulse2 at the beginning of the Robot :: MotionPrediction function.

2. Calculate the Encoder Count Difference
To get the motion of the past time step, we must difference the current sensor
reading with the last sensor reading. This will reflect the number of encoder pulses
that were counted during the last time step. We call these differences diffEncoder1
and diffEncoder2.

Within the Robot :: MotionPrediction function, set these encoder differences using
the variables lastEncoderPulse1 and lastEnoderPulse2.

3. Eliminate Encoder Rollover
The encoder signal sent from the robot, ranges from 0 to 32767. This must be taken
into account when taking the difference of two consecutive encoder measurements.

For example, consider a case where the encoder measurement at one time step is
32763, and 11 at the next time step. The actual difference between the two time
steps is 16 pulses, but taking the difference between these two values would result
in -32752.

Check that this rollover problem did not occur when calculating the encoder count
differences, and correct for the problem where it occurs. Note that 32767 is stored
as a constant in Robot.h named encoderMax.

4. Update the Last Encoder Count Variables
Add code to remember the current encoder measurements for use in the next time
step, (i.e. set lastEncoderPulse1 and lastEncoderPulse2).

5. Calculate Wheel Distances
Based on the number of pulses counted over the last time step, calculate the
distance traveled by each wheel: wheelDistanceL and wheelDistanceR. Note that
wheel 1 is the left wheel and wheel 2 is the right wheel.

You will need to make use of the fact that the encoder has maximum 1200 pulses,
set as constant encoderResolution in Robot.h. You will also need the wheel’s
radius, set as the constant wheelRadius.

6. Calculate the Angle and Distance Travelled
Using the distance each wheel travelled, we can calculate the distance the center of
the robot travelled distanceTravelled, as well as the change in orientation
angleTravelled. The equations required are presented in lecture. You will need the
constant robotWidth.

This is the last code to be added to the function Robot :: MotionPrediction.

7. Update Robot States
Within the function Robot :: LocalizeRealStateWithOdometry that is called after
Robot :: MotionPrediction, update the new position and orientation of the robot: x,
y, t. At this point, you can also set the estimated states to be equal to the actual.
Make sure the angle remains between –π and π.

8. Characterize Errors
Setup an experiment to determine the types of errors that are usually encountered
with your robot. For example run the robot through several tests that move the robot
straight ahead d meters, where d takes on values 0.5, 1.0, 1.5, 2.0, 2.5, …, 5.0.
Repeat the test many times for each value of d. At the end of each test, record the

predicted position of the robot (from odometry), and the actual measured position
(use a ruler). For each value of d, calculate the mean and variance of the x, y, t
coordinates.

Run similar tests where d remains constant at 0, but there are various changes in
orientation.

Note that data can be logged into a file as shown in the function
CRoboticsLabDlg::StartRobotControlThread located in the file RoboticsLabDlg.cpp.

This part of the lab is meant to be open ended. You may perform different tests and
get different results than other groups.

DELIVERABLES

1. Demonstration
Before the end of the final day of this lab, you must demonstrate to the Professor
that your odometry is working properly. In both simulation and X80 mode, the
OpenGL window should show the robot and estimate move according to the motion
control commands.

2. Submit
Write a report (2-10 pages) describing your findings from the error characterization
step. Include a 1 paragraph introduction describing the purpose and goal. Also
include a description of your tests, a results section, and a conclusion section. The
report is due 1 week after the final day of this lab (midnight on Monday, Nov. 7th).

