
COS 495 – Autonomous Robot Navigation

Lab 4

Introduction to the X80 Robot

INTRODUCTION
The purpose of this lab is to introduce students to the X80 and the associated C++ base
code that will be programmed within Visual Studio. By the end of the lab, students
should understand the system architecture, and how to program the robots to conduct
future lab experiments.

BACKGROUND
The X80 uses a host computer to command and control the robot. Command signals,
are accepted from a host computer application then sent over wireless communication
to an embedded microcontroller on the robot. Sensor signals are sent from the
embedded microcontroller back through the wireless communication to the host
computer application. See Figure 1 below.

Figure 1: System Architecture

In this course, we will only be concerned with programming the C++ Application on the
host computer. The communication modules, embedded microprocessor, actuators and
sensors will not be reprogrammed or reconfigured.

For detailed description of the X80, see the manual that can be downloaded from the
course website’s lab page.

HOST COMPUTER

C++
Application

Communication
Module
Application

ROBOT

Embedded
Microprocessor

Communication
Module
Application

Commands

Sensors
Measurements

User
Inputs

Display

Actuators

Sensors

EXPERIMENTS

1. Locate the parts
Familiarize yourself with the robot. Be careful when lifting the robot off the ground.
Note it is unstable without the batteries. Find the following components:

§ Battery pack
§ Infra red range sensors
§ Ultrasound range sensors
§ Wheel encoders
§ Video camera
§ Pan/tilt servos for the video camera
§ Microprocessor board
§ Wireless Ethernet antenna
§ Power button

Try connecting the battery pack to the robot. There is a plug at the back, and a
Velcro seat for the pack to be placed. Turn the robot on.

2. Connect to the robot
To make a wireless communication connection with the robot, you must first
establish a connection between your host PC and one of the wireless routers in the
lab. Each robot is configured to work with a different wireless router, so make sure
you connect to the correct router.

To connect to a router, plug in your NetGear USB wireless adapter. Right-click on
the wireless connection icon located on the bottom right corner of you system tray,
and select Open Network and Sharing Center (see Fig. 2a).

(a) (b)

Figure 2: Connecting to the wireless router

On the pop up menu, select Manage Wireless Networks. This will open a new
window listing the available wireless connections, (Fig. 2b). Disconnect from
puwireless if your computer is connected to it.

Double click on the appropriate wireless router, (see table below). Enter the routers
Web key: 112233445566778899AABBCCDD. You need to enter it twice. Wait for
the connection to be made. Note you will not be able to get internet access from
Mustang Wireless and be connected to the robot simultaneously.

Identification Color IP SSID
dri NA 192.168.0.200 dri

robot1 Light blue 192.168.0.201 dri
robot2 Light green 192.168.0.202 dri
robot3 Black 192.168.0.203 dri
robot4 Red 192.168.0.204 dri
robot5 Dark green 192.168.0.205 dri
robot6 Dark yellow 192.168.0.206 dri2
robot7 Dark blue 192.168.0.207 dri2
robot8 Bright yellow 192.168.0.208 dri2
robot9 Silver 192.168.0.209 dri2

robot10 Orange 192.168.0.210 dri2
dri2 NA 192.168.0.211 dri2

Table 1: Network Configuration

Now that you are connected to the wireless router, double click on the
WiRobotGateforWiFi icon on your desktop. Make sure you don’t use the one from
the start menu. A window should pop up that looks like:

Figure 3: WiFi gateway utility window

Set the Robot ID to “drrobot1” as shown in Fig. 3. This will link your C++ code to the
wireless connection. If you want to use a different name other than drrobot1, you
must also change this in your C++ code.

Click on the Wi-Fi Connection radio button, and enter the IP of your robot, (shown on
bottom of robot or in Table 1). Enter the Port as “10001” as shown in Fig. 3. Then
press Connect. If the connection is made, the WiFi gateway window will minimize
itself.

3. Locate the code
In this class, we will not be touching the embedded code on the robot’s
microprocessor. Instead, we will program everything on a stand alone PC. This code
will run on the PC, using the WiFi connection to get closed loop control.

First, let’s get the code base on to the PC. From the website, download the zipped
folder “COS495-Lab4_BaseCode.zip” and extract it to your Desktop. You may want
to rename the extracted folder “COS495-Lab4_BaseCode_X”, where X is your group
name.

Open the folder and ouble click on the file “RoboticsLab.sln”. A visual studio window
should open, with the base code solution, (see Fig. 4).

Figure 4: Robotics Lab Solution opened in Microsoft Visual Studio

Now you can use the list of files in the Solution Explorer (left pane) to navigate the
code. You can double click on the files to open them for viewing or editing. Make
sure you can find the files listed below.

3.1 Files needed for this lab
The following files are those that you will edit in subsequent steps of this lab.

§ Robot.*
§ RoboticsLabDlg.*

3.2 Files needed for future labs
The following files are those that you will edit in future labs. These files will be used
for localization and image tracking labs.

§ ImageProcessingTools.*
§ Landmark.*
§ Map.*
§ Particle.*

3.3 Files that shouldn’t be edited
You shouldn’t have to touch the files listed below. The OpenGL files enable the 3D
viewing of the robot. The wirobotsdk files provide the interface with the actual robot
(or simulator as you will see). The RoboticsLab.* files are the application file with
instantiates the dialog box (RoboticsLabDlg).

§ OpenGLControl.*
§ OpenGLDevice.*
§ StdAfx.*
§ wirobotsdk.*
§ RoboticsLab.*

The overall code architecture is shown in Fig. 5:

Figure 5: Overview of Class structure.

ROBOTICS LAB
SOLUTION RoboticsLab

RoboticsLabDlg

wirobotsdk Robot OpenGL

Note that the application file is RoboticsLab, which instantiates a dialogue window:
RoboticsLabDlg. Within RoboticsLabDlg, a Robot is instantiated. This is where most
of the programming is done for localization and control of the robot. The OpenGL
classes are used for displaying robot states. The wirobotsdk class is used to
interface with the real robot through WiFi.

4. Build and Run
From the Build drop down menu on Visual Studio, select Build Solution. From the
Debugging drop down menu, select Start Debugging. A dialog box should appear as
shown in Fig. 6.

The left panels display sensor readings. The top right section shows a 3D
interpretation of the robot within its environment. The bottom right panels have
control buttons and settings.

Of importance is the Robot Type radio button set. This allows users to switch
between control of a simulated robot agent, or the actual robot itself. Students
should conduct all debugging in Simulator mode.

Figure 6: RoboticsLab Dialogue Window

5. Control the Robot Manually
Select the X80 radio button for Robot Type. Experiment with the Motion Control and
Camera Control buttons.

Repeat using the Simulator. Note at this point the robot will not move around in your
display, we will code that up in the next lab!

6. Reverse directions of robot Motion
In this part of the lab, you will edit the RoboticsLabDlg.cpp file to make the motion
control buttons work in reverse. The purpose of this step is to get acquainted with
the code in two ways:

§ Where command functions from the dialogue window are located.
§ How the wirobotsdk is used to communicate with the robot

Find the function CRoboticsLabDlg::OnForward(). This function is called when the
button with the upward facing arrow is pressed. The code in this function is:

// Set Control Mode to
robot_dlg->controllerType = CONTROLLERTYPE_MANUALCONTROL;

// Set Desired Speed
double desiredWheelSpeed1 = -0.1*encoderResolution /(2*3.14*wheelRadius);
double desiredWheelSpeed2 = +0.1*encoderResolution/(2*3.14*wheelRadius);
m_MOTSDK_real.SetDcMotorControlMode (0,M_VELOCITY);
m_MOTSDK_real.SetDcMotorControlMode (1,M_VELOCITY);
m_MOTSDK_real.SetDcMotorVelocityControlPID (0, 30, 10, 0);
m_MOTSDK_real.SetDcMotorVelocityControlPID (1, 30, 10, 0);
m_MOTSDK->DcMotorVelocityNonTimeCtrAll((short)desiredWheelSpeed1,
(short)desiredWheelSpeed2,NO_CONTROL,NO_CONTROL,NO_CONTROL,NO_CONTROL);

The first line is used to set the robot control mode to manual (as opposed to
autonomous mode used for point tracking, wall tracking etc.) Then, desired speeds
for each wheel are set. Note that encoderResolution is the number of counts in one
rotation. These commands are used to set the speed to 0.1 m/s. Confirm the math
makes sense to you, making sure to understand the units. Such calculations are
used often in mobile robots.

The next 2 lines of code are used to set the type of DC Motor control. They set the
mode to M_VELOCITY, implying that the motors should track desired velocity. After
these lines, there are two lines of code setting the controller gains for velocity control
mode. These are PID gains.

Finally, there is a command that sends the desired speeds to the robot, so that they
may be used for velocity control of the motors.

Note that two different instances of the wirobotsdk are used here: m_MOTSDK_real
and a pointer m_MOTSDK. In general, the base code uses the pointer m_MOTSDK
to point to either m_MOTSDK_real or m_MOTSDK_simulator, depending whether
the dialogue window has X80 or simulator selected under robot type. Since the
simulator does not need motor parameters set, we only set PID gains on
m_MOTSDK_real.

Now that you are somewhat familiar with the code, you can make some simple
changes. See if you can edit the code to make the robot move backwards instead of
forward when the button labeled with the up arrow is pressed. Don’t forget to change
this back for later.

7. Read the Sensors
Now, find the function CRoboticsLabDlg::StartDlgUpdateThread. This is one a few
threads that runs on its own loop. This particular thread is used to update the sensor
measurements from the robot.

For example, the following code is used to grab the current encoder count from the
robot.

// Update Encoders
ts->_this->m_Encoder1 = ts->_this->m_MOTSDK->GetEncoderPulse1();
ts->_this->m_Encoder2 = ts->_this->m_MOTSDK->GetEncoderPulse2();

Again we see that m_MOTSDK is used to access the robot or simuled robot,
(depending on where it is pointing). See if you can make encoder1 display 99 on the
dialogue window. Now see if you can switch sonar readouts 1 and 3 on the dialogue
window. Don’t forget to switch these back when you are done.

8. Closed loop control
The goal of this part of the lab is to make the robot drive to a wall, and position itself
50 cm from the wall. The robot should start facing the wall, and be located
somewhere between 20 and 150 cm from the wall.

The closed loop control should work as follows. If the robot is farther than 50 cm
from the wall, it should move forward at a SLOW constant speed. If the robot is
closer than 50 cm to the wall, it should move backwards. If you are clever you can
use a “Proportional Feedback Control” system. Ultrasound range sensors will
provide the distance measurement.

The function to be edited is Robot :: WallPositioning, located in Robot.cpp.

Note how the function is called from Robot :: RunControlLoop, the main function
called from the thread dedicated to robot control in RoboticsLabDlg.cpp. (Try to find
these calls).

Within Robot :: RunControlLoop, most of your future labs will be based. It is from
here that different localization and control algorithms will be called.

