
Motion and Optical Flow 

  



Moving to Multiple Images 

• So far, we’ve mostly looked at processing a 
single image 

• Multiple images 
– Multiple cameras at one time: stereo 

– Single camera at many times: video 
• Moving camera 

• Moving objects 

• Changing environment (e.g., lighting) 

– (Multiple cameras at multiple times) 



Applications of Multiple Images 

• 2D 
– Feature / object tracking 

– Segmentation based on motion 

– Image fusion (extending field of view, dynamic 
range, other parameters) 

• 3D 
– Shape extraction 

– Motion capture 



Applications of Multiple Images 
in Graphics 

• Stitching images into panoramas 

• Automatic image morphing 

• Reconstruction of 3D models for rendering 

• Capturing articulated motion for animation  



Applications of Multiple Images 
in Biological Systems 

• Shape inference 

• Peripheral sensitivity to motion (low-level) 

• Looming field – obstacle avoidance 

• Very similar applications in robotics 



Looming Field 

• Pure translation: 
motion looks like 
it originates at a 
point – focus of 
expansion 



Key Problem 

• Main problem in most multiple-image methods: 
correspondence 



Correspondence 

• Small displacements 
– Differential algorithms 
– Based on gradients in space and time 
– Dense correspondence estimates 
– Most common with video 

• Large displacements 
– Matching algorithms 
– Based on correlation or features 
– Sparse correspondence estimates 
– Most common with multiple cameras / stereo 



Result of Correspondence 

• For points in image i, displacements to 
corresponding locations in image j 

• In video, usually called motion field 

• In stereo, usually called disparity 



Computing Motion Field 

• Basic idea: a small portion of the image 
(“local neighborhood”) shifts position 

• Assumptions 
– No / small changes in reflected light 

– No / small changes in scale 

– No occlusion or disocclusion 

– Neighborhood is correct size: aperture problem 



Actual and Apparent Motion 

• If these assumptions violated, can still use the 
same methods – apparent motion 

• Result of algorithm is optical flow 
(vs. ideal motion field) 

• Most obvious effects: 
– Aperture problem: can only get motion 

perpendicular to edges 

– Errors near discontinuities (occlusions) 



Aperture Problem 

• Too big: 
confused by 
multiple motions 

 

• Too small: 
only get motion 
perpendicular 
to edge 



Computing Optical Flow: 
Preliminaries 

• Image sequence I(x,y,t) 

• Uniform discretization along x,y,t – 
“cube” of data 

• Differential framework: compute partial 
derivatives along x,y,t by convolving with 
derivative of Gaussian 



Computing Optical Flow: 
Image Brightness Constancy 

• Basic idea: a small portion of the image 
(“local neighborhood”) shifts position 

• Brightness constancy assumption: 

0=
dt
dI



Computing Optical Flow: 
Image Brightness Constancy 

• This does not say that a position in the image 
remains the same brightness! 

•      vs.     : total vs. partial derivative 

• Use chain rule 
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Computing Optical Flow: 
Image Brightness Constancy 

• Given optical flow v(x,y) 
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Image brightness constancy equation 



Computing Optical Flow: 
Discretization 

• Look at some neighborhood N: 
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Computing Optical Flow: 
Least Squares 

• In general, overconstrained linear system 

• Solve by least squares 

bAAAv
bAvAA

bAv

T1T

TT

want

)(
)(

0

−−=

−=⇒
=+



Computing Optical Flow: 
Stability 

• Has a solution unless  C = ATA  is singular 
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Computing Optical Flow: 
Stability 

• Where have we encountered C before? 

• Corner detector! 

• C is singular if constant intensity or edge 

• Use eigenvalues of C: 
– to evaluate stability of optical flow computation 

– to find good places to compute optical flow (corners!) 

– [Shi-Tomasi] 



Computing Optical Flow: 
Improvements 

• Assumption that optical flow is constant over 
neighborhood not always good 

• Decreasing size of neighborhood ⇒ 
C more likely to be singular 

• Alternative: weighted least-squares 
– Points near center = higher weight 

– Still use larger neighborhood 



Computing Optical Flow: 
Weighted Least Squares 

• Let W be a diagonal matrix of weights 
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Computing Optical Flow: 
Improvements 

• What if windows are still bigger? 

• Adjust motion model: no longer constant 
within a window 

• Popular choice: affine model 



Computing Optical Flow: 
Affine Motion Model 

• Translational model 

 

 

• Affine model 

 

 

• Solved as before, but 6 unknowns instead of 2 
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Computing Optical Flow: 
Improvements 

• Larger motion: how to maintain “differential” 
approximation? 

• Solution: iterate 

• Even better: adjust window / smoothing 
– Early iterations: use larger Gaussians to 

allow more motion  

– Late iterations: use less blur to find exact solution, 
lock on to high-frequency detail 



Iteration 

• Local refinement of optical flow estimate 

• Sort of equivalent to multiple iterations of 
Newton’s method 



Computing Optical Flow: 
Lucas-Kanade 

• Iterative algorithm: 
1. Set σ = large (e.g. 3 pixels) 

2. Set I’ ← I1 

3. Set v ← 0 

4. Repeat while SSD(I’, I2) > τ 
1. v += Optical flow(I’ → I2) 

2. I’ ← Warp(I1, v) 

5. After n iterations, 
set σ = small (e.g. 1.5 pixels) 



Computing Optical Flow: 
Lucas-Kanade 

• I’ always holds warped version of I1 
– Best estimate of I2 

• Gradually reduce thresholds 

• Stop when difference between I’ and I2 small 
– Simplest difference metric = sum of squared 

differences (SSD) between pixels 



Image Warping 

• Given a coordinate transform x’ = h(x) and a 
source image f(x), how do we compute a 
transformed image g(x’) = f(h(x))? 

f(x) g(x’) x x’ 

h(x) 

Szeliski 



Forward Warping 

• Send each pixel f(x) to its corresponding 
location x’ = h(x) in g(x’) 

• What if pixel lands “between” two pixels? 

f(x) g(x’) x x’ 

h(x) 

Szeliski 



Forward Warping 

• Send each pixel f(x) to its corresponding 
location x’ = h(x) in g(x’) 

• What if pixel lands “between” two pixels? 

• Answer: add “contribution” to several pixels, 
normalize later (splatting) 

f(x) g(x’) x x’ 

h(x) 

Szeliski 



Inverse Warping 

• Get each pixel g(x’) from its corresponding 
location x = h-1(x’) in f(x) 

• What if pixel comes from “between” two pixels? 

f(x) g(x’) x x’ 

h-1(x’) 

Szeliski 



Inverse Warping 

• Get each pixel g(x’) from its corresponding 
location x = h-1(x’) in f(x) 

• What if pixel comes from “between” two pixels? 

• Answer: resample color value from interpolated 
(prefiltered) source image 

Szeliski 



Optical Flow Applications 

[Feng & Perona] 

Video Frames 



Optical Flow Applications 

Optical Flow Depth Reconstruction 

[Feng & Perona] 



Optical Flow Applications 

Obstacle Detection: Unbalanced Optical Flow 

[Temizer] 



Optical Flow Applications 

• Collision avoidance: 
keep optical flow 
balanced between sides 
of image 

[Temizer] 
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