
Motion and Optical Flow

Moving to Multiple Images

• So far, we’ve mostly looked at processing a
single image

• Multiple images
– Multiple cameras at one time: stereo

– Single camera at many times: video
• Moving camera

• Moving objects

• Changing environment (e.g., lighting)

– (Multiple cameras at multiple times)

Applications of Multiple Images

• 2D
– Feature / object tracking

– Segmentation based on motion

– Image fusion (extending field of view, dynamic
range, other parameters)

• 3D
– Shape extraction

– Motion capture

Applications of Multiple Images
in Graphics

• Stitching images into panoramas

• Automatic image morphing

• Reconstruction of 3D models for rendering

• Capturing articulated motion for animation

Applications of Multiple Images
in Biological Systems

• Shape inference

• Peripheral sensitivity to motion (low-level)

• Looming field – obstacle avoidance

• Very similar applications in robotics

Looming Field

• Pure translation:
motion looks like
it originates at a
point – focus of
expansion

Key Problem

• Main problem in most multiple-image methods:
correspondence

Correspondence

• Small displacements
– Differential algorithms
– Based on gradients in space and time
– Dense correspondence estimates
– Most common with video

• Large displacements
– Matching algorithms
– Based on correlation or features
– Sparse correspondence estimates
– Most common with multiple cameras / stereo

Result of Correspondence

• For points in image i, displacements to
corresponding locations in image j

• In video, usually called motion field

• In stereo, usually called disparity

Computing Motion Field

• Basic idea: a small portion of the image
(“local neighborhood”) shifts position

• Assumptions
– No / small changes in reflected light

– No / small changes in scale

– No occlusion or disocclusion

– Neighborhood is correct size: aperture problem

Actual and Apparent Motion

• If these assumptions violated, can still use the
same methods – apparent motion

• Result of algorithm is optical flow
(vs. ideal motion field)

• Most obvious effects:
– Aperture problem: can only get motion

perpendicular to edges

– Errors near discontinuities (occlusions)

Aperture Problem

• Too big:
confused by
multiple motions

• Too small:
only get motion
perpendicular
to edge

Computing Optical Flow:
Preliminaries

• Image sequence I(x,y,t)

• Uniform discretization along x,y,t –
“cube” of data

• Differential framework: compute partial
derivatives along x,y,t by convolving with
derivative of Gaussian

Computing Optical Flow:
Image Brightness Constancy

• Basic idea: a small portion of the image
(“local neighborhood”) shifts position

• Brightness constancy assumption:

0=
dt
dI

Computing Optical Flow:
Image Brightness Constancy

• This does not say that a position in the image
remains the same brightness!

• vs. : total vs. partial derivative

• Use chain rule

()
t
I

dt
dy

y
I

dt
dx

x
I

dt
ttytxdI

∂
∂

+
∂
∂

+
∂
∂

=
),(),(

dt
dI

t
I

∂
∂

Computing Optical Flow:
Image Brightness Constancy

• Given optical flow v(x,y)

()

0)(

0

0),(),(

T =+∇

=
∂
∂

+
∂
∂

+
∂
∂

=

tII
t
I

dt
dy

y
I

dt
dx

x
I

dt
ttytxdI

v

Image brightness constancy equation

Computing Optical Flow:
Discretization

• Look at some neighborhood N:

()

0

0),(),(

want

wantT

N),(

=+

=+∇∀
∈

bAv

v jiIjiI t
ji

=

∇

∇
∇

=

),(

),(
),(

),(

),(
),(

22

11

22

11

nnt

t

t

nn jiI

jiI
jiI

jiI

jiI
jiI

bA

Computing Optical Flow:
Least Squares

• In general, overconstrained linear system

• Solve by least squares

bAAAv
bAvAA

bAv

T1T

TT

want

)(
)(

0

−−=

−=⇒
=+

Computing Optical Flow:
Stability

• Has a solution unless C = ATA is singular

[]

=

∇

∇
∇

∇∇∇=

=

∑∑
∑∑

N
y

N
yx

N
yx

N
x

nn

nn

III

III

jiI

jiI
jiI

jiIjiIjiI

2

2

22

11

2211

T

),(

),(
),(

),(),(),(

C

C

AAC

Computing Optical Flow:
Stability

• Where have we encountered C before?

• Corner detector!

• C is singular if constant intensity or edge

• Use eigenvalues of C:
– to evaluate stability of optical flow computation

– to find good places to compute optical flow (corners!)

– [Shi-Tomasi]

Computing Optical Flow:
Improvements

• Assumption that optical flow is constant over
neighborhood not always good

• Decreasing size of neighborhood ⇒
C more likely to be singular

• Alternative: weighted least-squares
– Points near center = higher weight

– Still use larger neighborhood

Computing Optical Flow:
Weighted Least Squares

• Let W be a diagonal matrix of weights

Wbb
WAA

→
→

bWAAWAv
bAAAv

2T12T

T1T

)(
)(

−

−

−=⇒

−=

w

Computing Optical Flow:
Improvements

• What if windows are still bigger?

• Adjust motion model: no longer constant
within a window

• Popular choice: affine model

Computing Optical Flow:
Affine Motion Model

• Translational model

• Affine model

• Solved as before, but 6 unknowns instead of 2

+

=

y

x

t
t

y
x

y
x

1

1

2

2

+

=

y

x

t
t

y
x

dc
ba

y
x

1

1

2

2

Computing Optical Flow:
Improvements

• Larger motion: how to maintain “differential”
approximation?

• Solution: iterate

• Even better: adjust window / smoothing
– Early iterations: use larger Gaussians to

allow more motion

– Late iterations: use less blur to find exact solution,
lock on to high-frequency detail

Iteration

• Local refinement of optical flow estimate

• Sort of equivalent to multiple iterations of
Newton’s method

Computing Optical Flow:
Lucas-Kanade

• Iterative algorithm:
1. Set σ = large (e.g. 3 pixels)

2. Set I’ ← I1

3. Set v ← 0

4. Repeat while SSD(I’, I2) > τ
1. v += Optical flow(I’ → I2)

2. I’ ← Warp(I1, v)

5. After n iterations,
set σ = small (e.g. 1.5 pixels)

Computing Optical Flow:
Lucas-Kanade

• I’ always holds warped version of I1
– Best estimate of I2

• Gradually reduce thresholds

• Stop when difference between I’ and I2 small
– Simplest difference metric = sum of squared

differences (SSD) between pixels

Image Warping

• Given a coordinate transform x’ = h(x) and a
source image f(x), how do we compute a
transformed image g(x’) = f(h(x))?

f(x) g(x’) x x’

h(x)

Szeliski

Forward Warping

• Send each pixel f(x) to its corresponding
location x’ = h(x) in g(x’)

• What if pixel lands “between” two pixels?

f(x) g(x’) x x’

h(x)

Szeliski

Forward Warping

• Send each pixel f(x) to its corresponding
location x’ = h(x) in g(x’)

• What if pixel lands “between” two pixels?

• Answer: add “contribution” to several pixels,
normalize later (splatting)

f(x) g(x’) x x’

h(x)

Szeliski

Inverse Warping

• Get each pixel g(x’) from its corresponding
location x = h-1(x’) in f(x)

• What if pixel comes from “between” two pixels?

f(x) g(x’) x x’

h-1(x’)

Szeliski

Inverse Warping

• Get each pixel g(x’) from its corresponding
location x = h-1(x’) in f(x)

• What if pixel comes from “between” two pixels?

• Answer: resample color value from interpolated
(prefiltered) source image

Szeliski

Optical Flow Applications

[Feng & Perona]

Video Frames

Optical Flow Applications

Optical Flow Depth Reconstruction

[Feng & Perona]

Optical Flow Applications

Obstacle Detection: Unbalanced Optical Flow

[Temizer]

Optical Flow Applications

• Collision avoidance:
keep optical flow
balanced between sides
of image

[Temizer]

	Motion and Optical Flow
	Moving to Multiple Images
	Applications of Multiple Images
	Applications of Multiple Images�in Graphics
	Applications of Multiple Images�in Biological Systems
	Looming Field
	Key Problem
	Correspondence
	Result of Correspondence
	Computing Motion Field
	Actual and Apparent Motion
	Aperture Problem
	Computing Optical Flow:�Preliminaries
	Computing Optical Flow:�Image Brightness Constancy
	Computing Optical Flow:�Image Brightness Constancy
	Computing Optical Flow:�Image Brightness Constancy
	Computing Optical Flow:�Discretization
	Computing Optical Flow:�Least Squares
	Computing Optical Flow:�Stability
	Computing Optical Flow:�Stability
	Computing Optical Flow:�Improvements
	Computing Optical Flow:�Weighted Least Squares
	Computing Optical Flow:�Improvements
	Computing Optical Flow:�Affine Motion Model
	Computing Optical Flow:�Improvements
	Iteration
	Computing Optical Flow:�Lucas-Kanade
	Computing Optical Flow:�Lucas-Kanade
	Image Warping
	Forward Warping
	Forward Warping
	Inverse Warping
	Inverse Warping
	Optical Flow Applications
	Optical Flow Applications
	Optical Flow Applications
	Optical Flow Applications

