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Moving to Multiple Images

So far, we’ve mostly looked at processing a
single image

Multiple images
— Multiple cameras at one time: stereo

— Single camera at many times: video

* Moving camera
* Moving objects
* Changing environment (e.g., lighting)

— (Multiple cameras at multiple times)



Applications of Multiple Images

2D
— Feature / object tracking
— Segmentation based on motion

— Image fusion (extending field of view, dynamic
range, other parameters)

3D
— Shape extraction

— Motion capture



Applications of Multiple Images
in Graphics

Stitching images into panoramas
Automatic image morphing
Reconstruction of 3D models for rendering

Capturing articulated motion for animation



Applications of Multiple Images

in Biological Systems

Shape inference
Peripheral sensitivity to motion (low-level)
Looming field — obstacle avoidance

Very similar applications in robotics



Looming Field

Pure translation:
motion looks like
It originates at a
point — focus of
expansion



Key Problem

Main problem in most multiple-image methods:
correspondence



Correspondence

Small displacements
— Differential algorithms

— Based on gradients in space and time
— Dense correspondence estimates

— Most common with video

Large displacements
— Matching algorithms

— Based on correlation or features
— Sparse correspondence estimates

— Most common with multiple cameras / stereo



Result of Correspondence

For points in image i, displacements to
corresponding locations in image |

In video, usually called motion field

In stereo, usually called disparity



Computing Motion Field

Basic idea: a small portion of the image
(“local neighborhood”) shifts position

Assumptions

— No / small changes in reflected light
— No / small changes in scale

— No occlusion or disocclusion

— Neighborhood is correct size: aperture problem



Actual and Apparent Motion

If these assumptions violated, can still use the
same methods — apparent motion

Result of algorithm is optical flow
(vs. ideal motion field)

Most obvious effects:

— Aperture problem: can only get motion
perpendicular to edges

— Errors near discontinuities (occlusions)



Aperture Problem

Too big:
confused by

multiple motions

Too small:
only get motion
perpendicular

to edge




Computing Optical Flow:

Preliminaries

Image sequence I(x,y,t)

Uniform discretization along x,y,t —
“cube” of data

Differential framework: compute partial
derivatives along x,y,t by convolving with
derivative of Gaussian



Computing Optical Flow:

Image Brightness Constancy

Basic idea: a small portion of the image
(“local neighborhood”) shifts position

Brightness constancy assumption:

dl

— .
dt



Computing Optical Flow:

Image Brightness Constancy

This does not say that a position in the image

remains the same brightness!

dl ol

S : total vs. partial derivative

Use chain rule

dl(x(t),y(t),t) ol dx ol dy ol
dt ox dt (’9y dt at




Computing Optical Flow:

Image Brightness Constancy

Given optical flow v(x,y)

di (x(1), y(0.1) _

dt
al dx Ol dy al =
8x dt ay dt 8t
(V1)'v+1 =0

Image brightness constancy equation



Computing Optical Flow:

Discretization

Look at some neighborhood N:
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Computing Optical Flow:

Least Squares

In general, overconstrained linear system

Solve by least squares

WEL

Av+b =0
= (A'A)v=-A'b
v=—(A"A)"A'D



Computing Optical Flow:
Stability

Has a solution unless C = A'A s singular

C=A'A

C= [VI (i1’ Jl) Vi (i2’ Jz)

il o :
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Computing Optical Flow:
Stability

Where have we encountered C before?
Corner detector!
C is singular if constant intensity or edge

Use eigenvalues of C:
— to evaluate stability of optical flow computation

— to find good places to compute optical flow (corners!)
— [Shi-Tomasi]



Computing Optical Flow:

Improvements

Assumption that optical flow is constant over
neighborhood not always good

Decreasing size of neighborhood =
C more likely to be singular

Alternative: weighted least-squares
— Points near center = higher weight

— Still use larger neighborhood



Computing Optical Flow:
Weighted Least Squares

Let W be a diagonal matrix of weights

JAREESRVAV/A
b —> WD

v=—(A"A)"A'b
— v, = (ATW?A)TATW?



Computing Optical Flow:

Improvements

What if windows are still bigger?

Adjust motion model: no longer constant
within a window

Popular choice: affine model



Computing Optical Flow:
Affine Motion Model

Translational model

X2 il X1 i tx
Yo YA _ty_
Affine model
_xz_:_a b_rxl__l_ L,

Y| [C d]l W L,

Solved as before, but 6 unknowns instead of 2



Computing Optical Flow:

Improvements

Larger motion: how to maintain “differential”

approximation?
Solution: iterate

Even better: adjust window / smoothing
— Early iterations: use larger Gaussians to
allow more motion

— Late iterations: use less blur to find exact solution,
lock on to high-frequency detalil



[teration

Local refinement of optical flow estimate

Sort of equivalent to multiple iterations of
Newton’s method




Computing Optical Flow:

ILucas-Kanade

Iterative algorithm:

1.

Set o = large (e.g. 3 pixels)

2. Set " « I,
3.
4. Repeat while SSD(I’, 1,) > 7

Setv <« 0O

1. v += Optical flow(l" — I,)
2. 1"« Warpl(l;, v)

. After n iterations,

set o = small (e.g. 1.5 pixels)



Computing Optical Flow:

ILucas-Kanade

I” always holds warped version of I,

— Best estimate of |,
Gradually reduce thresholds

Stop when difference between |I” and I, small

— Simplest difference metric = sum of squared
differences (SSD) between pixels



Image Warping

Given a coordinate transtorm x” = h(x) and a
source image f(x), how do we compute a
transformed image g(x’) = f(h(x))?

Szeliski



Forward Warping

Send each pixel f(x) to its corresponding
location x” = h(x) in g(x’)

What if pixel lands “between” two pixels?

Szeliski



Forward Warping

Send each pixel f(x) to its corresponding
location x” = h(x) in g(x’)

What if pixel lands “between” two pixels?

Answer: add “contribution” to several pixels,
normalize later (splatting)

/_mm
; ;

X fx g(x)

Szeliski



Inverse Warping

Get each pixel g(x’) from its corresponding
location x = h-1(x’) in f(x)

What if pixel comes from “between” two pixels?

Szeliski



Inverse Warping

Get each pixel g(x’) from its corresponding
location x = h-1(x’) in f(x)

What if pixel comes from “between” two pixels?

Answer: resample color value from interpolated
(prefiltered) source image

Szeliski



Optical Flow Applications

Video Frames

[Feng & Peronal



Optical Flow Applications
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X coordinate in space: {cm)

Optical Flow Depth Reconstruction

[Feng & Peronal



Optical Flow Applications
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Obstacle Detection: Unbalanced Optical Flow

[Temizer]



Optical Flow Applications

Collision avoidance:
keep optical flow
balanced between sides
of image

[Temizer]
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