Derivations for Temporal Models

For those who prefer a more formal treatment, below are formal derivations for the recursive formulas given in class for
filtering, prediction, smoothing and finding the most likely sequence. R&N also provides such derivations, but the ones given
here are meant to go along more closely with the way that I did things in class.

Filtering
We want to compute P (z:|e1.+). Note that, by definition of conditional probability,
P (x¢,e1.¢)
P (zilers) = ——=
( tl t) P(elzt)
s0 P (z¢|e1.t) < P (x4, e1.) for any t.
We derive a recursive expression as follows:
P(zip1leriq1) o< P(xiy1,€1:041)
= Z P (x4, Ti41,€1:041) marginalization
Tt
= ZP (T4, €104, Tig1, €441) breaking e;.;41 into ey and e; 41
Tt
= Z P (z¢,e1:) P (@41, €r41|2t, €1:4) definition of conditional probability
Tt

= Z P (xy,e1.) P(xi41|ze, €1.) P (€t41|Ti41, @1, €1.¢) definition of conditional probability
Tt

by the Markov assumptions (applied

= Y P(wr,e1s) P(zalz) Peria|ziga) twice)
Tt
= P(ety1|mesr) Z P (x¢,e1.4) P (zeg1]2t) factoring out a constant from the sum
Tt
x  P(eir1|Tie1) Z P (z¢]e1.t) P (xiq1|) by the comments above.

Tt

Thus, P (z¢4+1]€1.t+1) can be computed recursively from P (z;|e1.t). In the base case that ¢t = 0, we use P (zgle1.0) = P (x0).

Prediction

We want to compute P (z;yi|e1.t). We again derive a recursive expression:
P(z¢ipi1lert) = E P (Ztik, Terkrilert) using marginalization
Ttk

= Z P (zyyrler.t) P (Xeqkt1|Titk,e14) definition of conditional probability

Ttttk

= Z P (ziyrlert) P (xerpy1|Tisn) by the Markov assumptions.

LTt+k

In the base case that k = 0, we compute P (z|e1.t) using the filtering algorithm above.



Smoothing
We want to compute P (zi|er.), for k < t. We have:

P(zgler:) o« P(xk,ers) by the usual argument
= P (x,e1.k,€kt+1:t) breaking up ej.; into e1.x and egy1.¢
= P (z,e1.k) P(ert1:¢|xk,e1.x) definition of conditional probability
= P (xg,e1.r) P (ert1.e|zr) by the Markov assumptions
x  P(zrlerr) P (ext1:t|zr) -

We already saw how to compute P (xg|e1.r) using the filtering algorithm above. For the other factor P (eg41.¢|xk), we can
do a (backwards) recursive computation:

P (ept1:t|zr) = Z P (g1, €kt1:|Tk) marginalization

Tht1

= Z P (zr41|zk) P (€k+1:t|Tk, Tht1) definition of conditional probability
Tht1

= Z P (zr11|zk) P (€kt1:t|Tht1) by the Markov assumptions
Tr+41

= Z P (2pq1|mr) P(€rs1, €ht2:t|Thy1) breaking up €x1:¢
Tk+41

= Z P (zg+1|zk) P (ext1|Tir1) P (€rt2:tlext1, Trt1) definition of conditional probability

Th+1

= Z P (zr41|zk) P (ekt1|zir1) P (€kt2:t|Ths1) by the Markov assumptions.

Thk+1

In the base case that k = t, we use P (epy1.¢|x:) = 1.



Finding the most likely sequence

(Note that the derivation below corrects the treatment in R&N which erroneously ignores zg.)

We wish to find the state sequence x¢.; that maximizes P (xo.;|e1.¢). Since they only differ by a constant factor, this is
the same as maximizing P (Xg.,€1.t). It is enough, for all z;, to find the maximum over xg.;—1, since then, as a final step,
we can take a final maximum over x;. In other words, we can use the fact that

max P (Xq.t,€1:t) = max | max P (Xo.t,€1:¢)
Xo0:t Tt X0:t—1

As usual, we will derive a recursive expression:

max P (Xo.t,€1.¢)
X0:t—1

= max P (X0:t—1,T¢,€1:4-1, €¢) breaking up xo.¢+ and 1.
0:t—1

definition of conditional probabilit
= max [P (x0:—1,€1:4—1) P (z¢|X0:t—1,€1:6—1) P (€¢|T¢, X0:4—1, €1:4-1)] P Y

X0:t—1 (applied repeatedly)
by the Markov assumptions (applied
= max [P (Xou-1,e10-1) P (@eloi-1) P (edla) o ptions (app
X0:t—1 wice)
= max max [P (Xg:t—1,€1:t—1) P (x¢t|xi—1) P (e+|xt)] breaking up the maximum

Tt—1 X0:t—2

factoring out constant terms from the
= max | P (x¢]xi—1) P (et|ry) max P (Xg:¢—1,€1:4-1) . §9
Tio1 X0:t—2 inner maximum.

Note that in the base case, t = 0, we have

){?aﬁ P (x0:¢,€1:1) = P (o) -



