Derivations for Temporal Models

For those who prefer a more formal treatment, below are formal derivations for the recursive formulas given in class for filtering, prediction, smoothing and finding the most likely sequence. R\&N also provides such derivations, but the ones given here are meant to go along more closely with the way that I did things in class.

Filtering

We want to compute $P\left(x_{t} \mid \mathbf{e}_{1: t}\right)$. Note that, by definition of conditional probability,

$$
P\left(x_{t} \mid \mathbf{e}_{1: t}\right)=\frac{P\left(x_{t}, \mathbf{e}_{1: t}\right)}{P\left(\mathbf{e}_{1: t}\right)}
$$

so $P\left(x_{t} \mid \mathbf{e}_{1: t}\right) \propto P\left(x_{t}, \mathbf{e}_{1: t}\right)$ for any t.
We derive a recursive expression as follows:

$$
\begin{aligned}
P\left(x_{t+1} \mid \mathbf{e}_{1: t+1}\right) & \propto P\left(x_{t+1}, \mathbf{e}_{1: t+1}\right) & & \\
& =\sum_{x_{t}} P\left(x_{t}, x_{t+1}, \mathbf{e}_{1: t+1}\right) & & \text { marginalization } \\
& =\sum_{x_{t}} P\left(x_{t}, \mathbf{e}_{1: t}, x_{t+1}, e_{t+1}\right) & & \text { breaking } \mathbf{e}_{1: t+1} \text { into } \mathbf{e}_{1: t} \text { and } e_{t+1} \\
& =\sum_{x_{t}} P\left(x_{t}, \mathbf{e}_{1: t}\right) P\left(x_{t+1}, e_{t+1} \mid x_{t}, \mathbf{e}_{1: t}\right) & & \text { definition of conditional probability } \\
& =\sum_{x_{t}} P\left(x_{t}, \mathbf{e}_{1: t}\right) P\left(x_{t+1} \mid x_{t}, \mathbf{e}_{1: t}\right) P\left(e_{t+1} \mid x_{t+1}, x_{t}, \mathbf{e}_{1: t}\right) & & \text { definition of conditional probability } \\
& =\sum_{x_{t}} P\left(x_{t}, \mathbf{e}_{1: t}\right) P\left(x_{t+1} \mid x_{t}\right) P\left(e_{t+1} \mid x_{t+1}\right) & & \text { by the Markov assumptions (applied } \\
& =P\left(e_{t+1} \mid x_{t+1}\right) \sum_{x_{t}} P\left(x_{t}, \mathbf{e}_{1: t}\right) P\left(x_{t+1} \mid x_{t}\right) & & \text { twice) } \\
& \propto P\left(e_{t+1} \mid x_{t+1}\right) \sum_{x_{t}} P\left(x_{t} \mid \mathbf{e}_{1: t}\right) P\left(x_{t+1} \mid x_{t}\right) & & \text { factoring out a constant from the sum }
\end{aligned}
$$

Thus, $P\left(x_{t+1} \mid \mathbf{e}_{1: t+1}\right)$ can be computed recursively from $P\left(x_{t} \mid \mathbf{e}_{1: t}\right)$. In the base case that $t=0$, we use $P\left(x_{0} \mid \mathbf{e}_{1: 0}\right)=P\left(x_{0}\right)$.

Prediction

We want to compute $P\left(x_{t+k} \mid \mathbf{e}_{1: t}\right)$. We again derive a recursive expression:

$$
\begin{aligned}
P\left(x_{t+k+1} \mid \mathbf{e}_{1: t}\right) & =\sum_{x_{t+k}} P\left(x_{t+k}, x_{t+k+1} \mid \mathbf{e}_{1: t}\right) & & \text { using marginalization } \\
& =\sum_{x_{t+k}} P\left(x_{t+k} \mid \mathbf{e}_{1: t}\right) P\left(x_{t+k+1} \mid x_{t+k}, \mathbf{e}_{1: t}\right) & & \text { definition of conditional probability } \\
& =\sum_{x_{t+k}} P\left(x_{t+k} \mid \mathbf{e}_{1: t}\right) P\left(x_{t+k+1} \mid x_{t+k}\right) & & \text { by the Markov assumptions. }
\end{aligned}
$$

In the base case that $k=0$, we compute $P\left(x_{t} \mid \mathbf{e}_{1: t}\right)$ using the filtering algorithm above.

Smoothing

We want to compute $P\left(x_{k} \mid \mathbf{e}_{1: t}\right)$, for $k<t$. We have:

$$
\begin{array}{rlrl}
P\left(x_{k} \mid \mathbf{e}_{1: t}\right) & \propto P\left(x_{k}, \mathbf{e}_{1: t}\right) & & \text { by the usual argument } \\
& =P\left(x_{k}, \mathbf{e}_{1: k}, \mathbf{e}_{k+1: t}\right) & & \text { breaking up } \mathbf{e}_{1: t} \text { into } \mathbf{e}_{1: k} \text { and } \mathbf{e}_{k+1: t} \\
& =P\left(x_{k}, \mathbf{e}_{1: k}\right) P\left(\mathbf{e}_{k+1: t} \mid x_{k}, \mathbf{e}_{1: k}\right) & & \text { definition of conditional probability } \\
& =P\left(x_{k}, \mathbf{e}_{1: k}\right) P\left(\mathbf{e}_{k+1: t} \mid x_{k}\right) & & \text { by the Markov assumptions } \\
& \propto P\left(x_{k} \mid \mathbf{e}_{1: k}\right) P\left(\mathbf{e}_{k+1: t} \mid x_{k}\right) . &
\end{array}
$$

We already saw how to compute $P\left(x_{k} \mid \mathbf{e}_{1: k}\right)$ using the filtering algorithm above. For the other factor $P\left(\mathbf{e}_{k+1: t} \mid x_{k}\right)$, we can do a (backwards) recursive computation:

$$
\begin{aligned}
P\left(\mathbf{e}_{k+1: t} \mid x_{k}\right) & =\sum_{x_{k+1}} P\left(x_{k+1}, \mathbf{e}_{k+1: t} \mid x_{k}\right) & & \text { marginalization } \\
& =\sum_{x_{k+1}} P\left(x_{k+1} \mid x_{k}\right) P\left(\mathbf{e}_{k+1: t} \mid x_{k}, x_{k+1}\right) & & \text { definition of conditional probability } \\
& =\sum_{x_{k+1}} P\left(x_{k+1} \mid x_{k}\right) P\left(\mathbf{e}_{k+1: t} \mid x_{k+1}\right) & & \text { by the Markov assumptions } \\
& =\sum_{x_{k+1}} P\left(x_{k+1} \mid x_{k}\right) P\left(e_{k+1}, \mathbf{e}_{k+2: t} \mid x_{k+1}\right) & & \text { breaking up } \mathbf{e}_{k+1: t} \\
& =\sum_{x_{k+1}} P\left(x_{k+1} \mid x_{k}\right) P\left(e_{k+1} \mid x_{k+1}\right) P\left(\mathbf{e}_{k+2: t} \mid e_{k+1}, x_{k+1}\right) & & \text { definition of conditional probability } \\
& =\sum_{x_{k+1}} P\left(x_{k+1} \mid x_{k}\right) P\left(e_{k+1} \mid x_{k+1}\right) P\left(\mathbf{e}_{k+2: t} \mid x_{k+1}\right) & & \text { by the Markov assumptions. }
\end{aligned}
$$

In the base case that $k=t$, we use $P\left(\mathbf{e}_{t+1: t} \mid x_{t}\right)=1$.

Finding the most likely sequence

(Note that the derivation below corrects the treatment in $R \& N$ which erroneously ignores x_{0}.)
We wish to find the state sequence $\mathbf{x}_{0: t}$ that maximizes $P\left(\mathbf{x}_{0: t} \mid \mathbf{e}_{1: t}\right)$. Since they only differ by a constant factor, this is the same as maximizing $P\left(\mathbf{x}_{0: t}, \mathbf{e}_{1: t}\right)$. It is enough, for all x_{t}, to find the maximum over $\mathbf{x}_{0: t-1}$, since then, as a final step, we can take a final maximum over x_{t}. In other words, we can use the fact that

$$
\max _{\mathbf{x}_{0: t}} P\left(\mathbf{x}_{0: t}, \mathbf{e}_{1: t}\right)=\max _{x_{t}}\left[\max _{\mathbf{x}_{0: t-1}} P\left(\mathbf{x}_{0: t}, \mathbf{e}_{1: t}\right)\right]
$$

As usual, we will derive a recursive expression:

$$
\begin{array}{ll}
\max _{\mathbf{x}_{0: t-1}} P\left(\mathbf{x}_{0: t}, \mathbf{e}_{1: t}\right) & \\
\quad=\max _{\mathbf{x}_{0: t-1}} P\left(\mathbf{x}_{0: t-1}, x_{t}, \mathbf{e}_{1: t-1}, e_{t}\right) & \text { breaking up } \mathbf{x}_{0: t} \text { and } \mathbf{e}_{1: t} \\
& =\max _{\mathbf{x}_{0: t-1}}\left[P\left(\mathbf{x}_{0: t-1}, \mathbf{e}_{1: t-1}\right) P\left(x_{t} \mid \mathbf{x}_{0: t-1}, \mathbf{e}_{1: t-1}\right) P\left(e_{t} \mid x_{t}, \mathbf{x}_{0: t-1}, \mathbf{e}_{1: t-1}\right)\right] \\
& \begin{array}{l}
\text { definition of conditional probability } \\
\text { (applied repeatedly) }
\end{array} \\
=\max _{\mathbf{x}_{0: t-1}}\left[P\left(\mathbf{x}_{0: t-1}, \mathbf{e}_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)\right] & \begin{array}{l}
\text { by the Markov assumptions (applied } \\
\text { twice })
\end{array} \\
=\max _{x_{t-1}} \max _{\mathbf{x}_{0: t-2}}\left[P\left(\mathbf{x}_{0: t-1}, \mathbf{e}_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)\right] & \text { breaking up the maximum } \\
=\max _{x_{t-1}}\left[P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \max _{\mathbf{x}_{0: t-2}} P\left(\mathbf{x}_{0: t-1}, \mathbf{e}_{1: t-1}\right)\right] & \begin{array}{l}
\text { factoring out constant terms from the } \\
\text { inner maximum. }
\end{array}
\end{array}
$$

Note that in the base case, $t=0$, we have

$$
\max _{\mathbf{x}_{0: t-1}} P\left(\mathbf{x}_{0: t}, \mathbf{e}_{1: t}\right)=P\left(x_{0}\right) .
$$

