
Derivations for Temporal Models

For those who prefer a more formal treatment, below are formal derivations for the recursive formulas given in class for
filtering, prediction, smoothing and finding the most likely sequence. R&N also provides such derivations, but the ones given
here are meant to go along more closely with the way that I did things in class.

Filtering

We want to compute P (xt|e1:t). Note that, by definition of conditional probability,

P (xt|e1:t) =
P (xt, e1:t)

P (e1:t)

so P (xt|e1:t) ∝ P (xt, e1:t) for any t.
We derive a recursive expression as follows:

P (xt+1|e1:t+1) ∝ P (xt+1, e1:t+1)

=
∑

xt

P (xt, xt+1, e1:t+1) marginalization

=
∑

xt

P (xt, e1:t, xt+1, et+1) breaking e1:t+1 into e1:t and et+1

=
∑

xt

P (xt, e1:t) P (xt+1, et+1|xt, e1:t) definition of conditional probability

=
∑

xt

P (xt, e1:t) P (xt+1|xt, e1:t)P (et+1|xt+1, xt, e1:t) definition of conditional probability

=
∑

xt

P (xt, e1:t) P (xt+1|xt)P (et+1|xt+1)
by the Markov assumptions (applied
twice)

= P (et+1|xt+1)
∑

xt

P (xt, e1:t)P (xt+1|xt) factoring out a constant from the sum

∝ P (et+1|xt+1)
∑

xt

P (xt|e1:t) P (xt+1|xt) by the comments above.

Thus, P (xt+1|e1:t+1) can be computed recursively from P (xt|e1:t). In the base case that t = 0, we use P (x0|e1:0) = P (x0).

Prediction

We want to compute P (xt+k|e1:t). We again derive a recursive expression:

P (xt+k+1|e1:t) =
∑

xt+k

P (xt+k, xt+k+1|e1:t) using marginalization

=
∑

xt+k

P (xt+k|e1:t)P (xt+k+1|xt+k, e1:t) definition of conditional probability

=
∑

xt+k

P (xt+k|e1:t)P (xt+k+1|xt+k) by the Markov assumptions.

In the base case that k = 0, we compute P (xt|e1:t) using the filtering algorithm above.

1

Smoothing

We want to compute P (xk|e1:t), for k < t. We have:

P (xk|e1:t) ∝ P (xk, e1:t) by the usual argument

= P (xk, e1:k, ek+1:t) breaking up e1:t into e1:k and ek+1:t

= P (xk, e1:k)P (ek+1:t|xk, e1:k) definition of conditional probability

= P (xk, e1:k)P (ek+1:t|xk) by the Markov assumptions

∝ P (xk|e1:k)P (ek+1:t|xk) .

We already saw how to compute P (xk|e1:k) using the filtering algorithm above. For the other factor P (ek+1:t|xk), we can
do a (backwards) recursive computation:

P (ek+1:t|xk) =
∑

xk+1

P (xk+1, ek+1:t|xk) marginalization

=
∑

xk+1

P (xk+1|xk)P (ek+1:t|xk, xk+1) definition of conditional probability

=
∑

xk+1

P (xk+1|xk)P (ek+1:t|xk+1) by the Markov assumptions

=
∑

xk+1

P (xk+1|xk)P (ek+1, ek+2:t|xk+1) breaking up ek+1:t

=
∑

xk+1

P (xk+1|xk)P (ek+1|xk+1)P (ek+2:t|ek+1, xk+1) definition of conditional probability

=
∑

xk+1

P (xk+1|xk)P (ek+1|xk+1)P (ek+2:t|xk+1) by the Markov assumptions.

In the base case that k = t, we use P (et+1:t|xt) = 1.

2

Finding the most likely sequence

(Note that the derivation below corrects the treatment in R&N which erroneously ignores x0.)
We wish to find the state sequence x0:t that maximizes P (x0:t|e1:t). Since they only differ by a constant factor, this is

the same as maximizing P (x0:t, e1:t). It is enough, for all xt, to find the maximum over x0:t−1, since then, as a final step,
we can take a final maximum over xt. In other words, we can use the fact that

max
x0:t

P (x0:t, e1:t) = max
xt

[

max
x0:t−1

P (x0:t, e1:t)

]

.

As usual, we will derive a recursive expression:

max
x0:t−1

P (x0:t, e1:t)

= max
x0:t−1

P (x0:t−1, xt, e1:t−1, et) breaking up x0:t and e1:t

= max
x0:t−1

[P (x0:t−1, e1:t−1)P (xt|x0:t−1, e1:t−1)P (et|xt,x0:t−1, e1:t−1)]
definition of conditional probability
(applied repeatedly)

= max
x0:t−1

[P (x0:t−1, e1:t−1)P (xt|xt−1) P (et|xt)]
by the Markov assumptions (applied
twice)

= max
xt−1

max
x0:t−2

[P (x0:t−1, e1:t−1)P (xt|xt−1)P (et|xt)] breaking up the maximum

= max
xt−1

[

P (xt|xt−1)P (et|xt) max
x0:t−2

P (x0:t−1, e1:t−1)

]

factoring out constant terms from the
inner maximum.

Note that in the base case, t = 0, we have

max
x0:t−1

P (x0:t, e1:t) = P (x0) .

3

