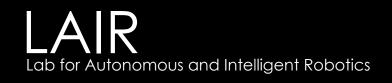


UNDERWATER ROBOTICS

Field Explorations in Marine Biology, Oceanography, and Archeology

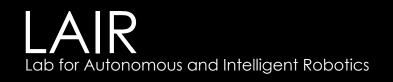
COS 402: Artificial Intelligence - Sept. 2011

Christopher M. Clark



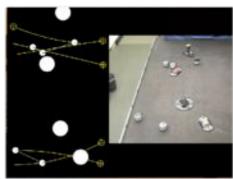
<u>Outline</u>

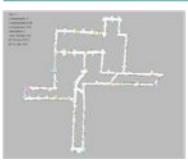
- Past Projects
- Maltese Cistern Mapping
- Distributed Multi Robot Boundary Tracking
- California Coastal Shark Tracking

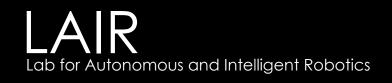


Past Projects

- Complete and Scalable multirobot motion planning in tunnels
- Formation Planning with Non-Holonomic Constraints
- Autonomous Control of an ROV
- Altruistic Relationships between robots in multi-robot communities
- Arctic ice Deployments
- Autonomous Highway System Decentralized lane level Control

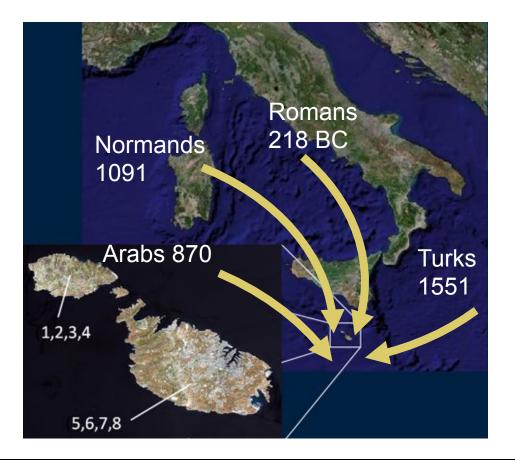


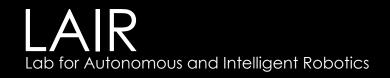


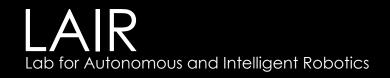


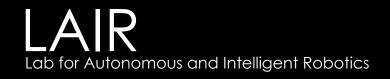
<u>Outline</u>

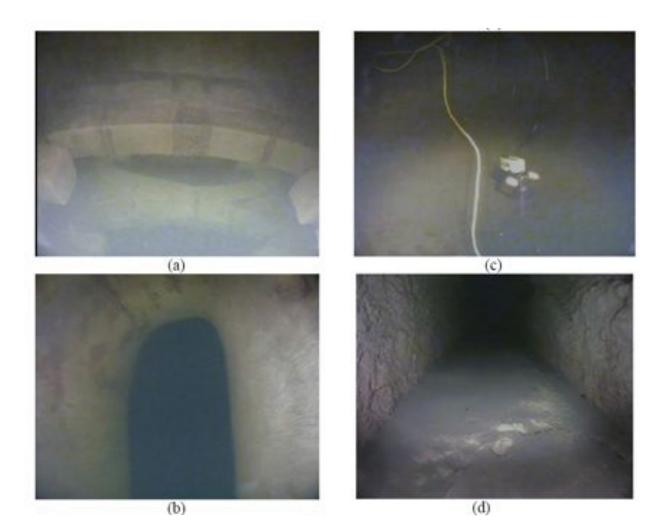
- Past Projects
- Maltese Cistern Mapping
- Distributed Multi Robot Boundary Tracking
- California Coastal Shark Tracking

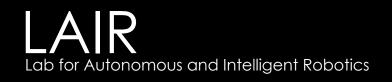








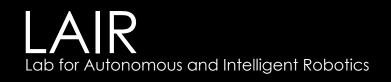




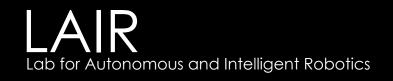
Localization

- Determine the state of the robot in a known environment (e.g. map)
- Mapping
 - Build a map of the environment using measurements with respect to a known robot state (e.g. with GPS)
- SLAM Simultaneous Localization And Mapping
 - Build a map of the environment using measurements with respect to a robot's state that is determined with respect to the map

[Thrun & Burgard 2005]



- Related Work:
 - Fairfield et. Al., Real-time slam with octree evidence grids for exploration in underwater tunnels, Journal of Field Robotics, 2006.
 - Ribas et. Al., Underwater slam in man-made structured environments, Journal of Field Robotics, 2008.
 - Mallios et. Al., Pose-Based SLAM with Probabilistic Scan Matching Algorithm using a Mechanical Scanned Imaging Sonar, IEEE OCEANS, 2009.



State Vector:

 $\boldsymbol{x} = [x \ y \ z \ \theta \ u \ v \ r \ \Theta]$

Position States (Global Frame)

Velocity States (Robot Frame)

Dynamic Model [Wang 2006]

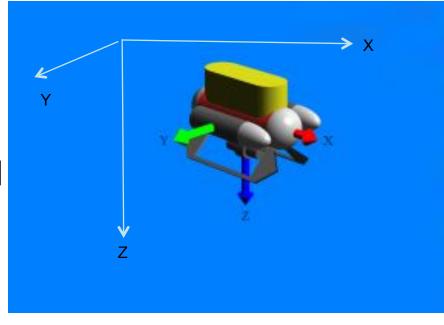
- Horiz. & Vert. Motion
 Decoupled
- Quadratic Drag terms
- No tether effects modeled

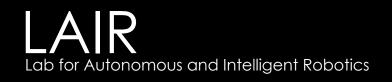
Control

Inputs

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_{t+1})$$

Current Previous State State



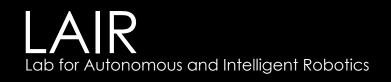


- Modeling Assumptions:
 - The ROV will usually move with low velocity when on mission
 - Almost three planes of symmetry;
 - Vehicle is assumed to be performing non-coupled motions.
 - Horizontal Plane:

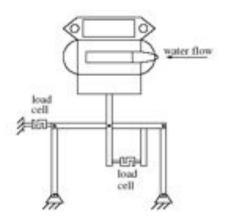
$$\begin{split} m_{11} \dot{u} &= -m_{22} v r + X_u u + X_{u|u|} u|u| + X \\ m_{22} \dot{v} &= m_{11} u r + Y_v v + Y_{v|v|} v|v|, \\ I \dot{r} &= N_r r + N_{r|r|} r|r| + N, \end{split}$$

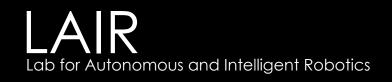
Vertical Plan:

$$m_{33}\dot{w} = Z_w w + Z_{w|w|} w|w| + Z$$

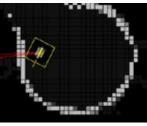


- Coefficients for the dynamic model are pre-calculated using strip theory;
- A series of tests are carried out to validate the hydrodynamic coefficients, including
 - Propeller mapping
 - Added mass coefficients
 - Damping coefficients

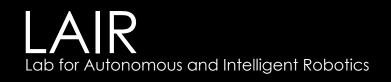




- Occupancy Grid Mapping
 - Doesn't require knowledge of features!
 - □ The environment is discretized into a grid of equal sized cells.
 - Each cell (*i*, *j*) is assigned a likelihood $m_{ij} \in [0,1]$ of being occupied



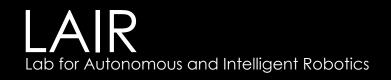
- FastSLAM for occupancy grids- [Thrun et al., 2005]
 - Particle filter based SLAM
 - Occupancy grids representation

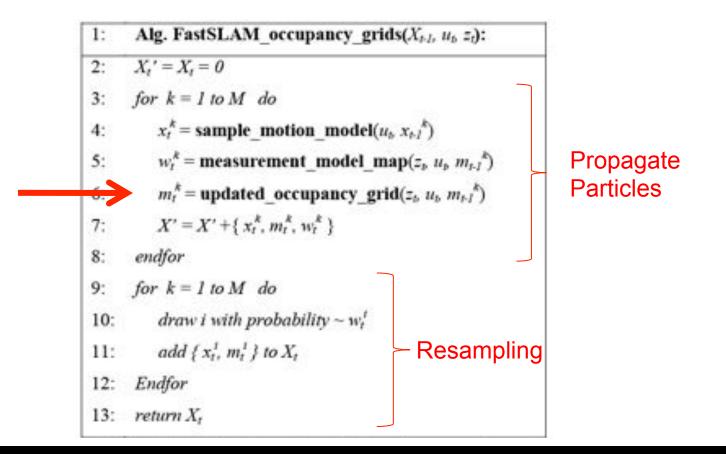


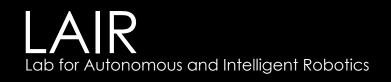
- What is a Particle?
 - A particle is an individual state estimate.
 - In our SLAM, a particle i has three component

$$\left\{ \begin{array}{c} \mathbf{x}^{i} \ \mathbf{m}^{i} \ \mathbf{w}^{i} \right\}$$
State Map Weight

- 1. The state is $\mathbf{x} = [x \ y \ z \ \theta \ u \ v \ r \ w]$
- 2. The map is an occupancy grid *m*
- 3. The weight *w* that indicates it's likelihood of being the correct state.







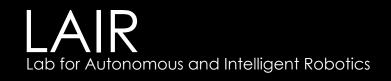
Step 4: sample_motion_model

- The state vector is propagated forward in time to reflect the motion of the ROV based on control inputs and uncertainty
- The dynamic model is used to propagate particle states,

$$x_{t+1} = f(x_t, u_{t+1} + randn(0, \sigma_u))$$
Experimentally Determined
Process Noise
$$f(x_t, u_{t+1} + randn)$$

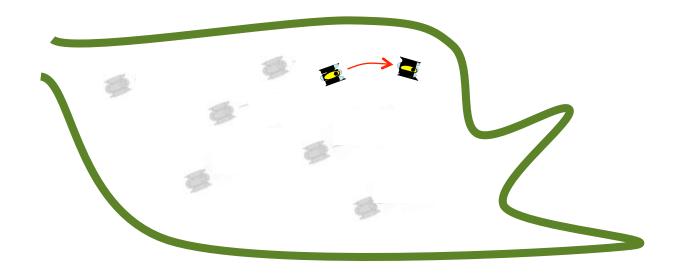
$$x_t$$

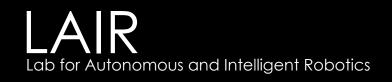
$$x_t$$



- Step 4: sample_motion_model
 - The dynamic model is used to propagate particle states,

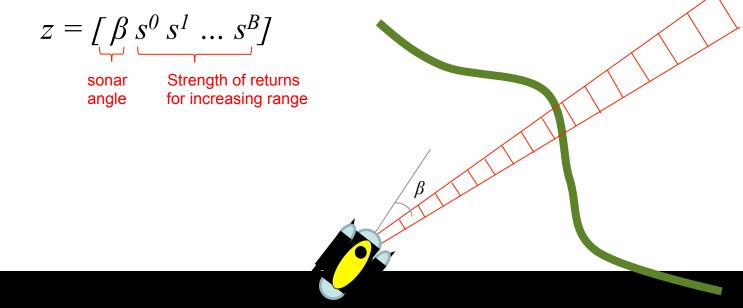
 $\boldsymbol{x}_{t+1} = f(\boldsymbol{x}_{t}, \boldsymbol{u}_{t+1} + \boldsymbol{randn})$

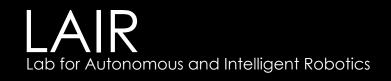




Step 5: measurement_model_map

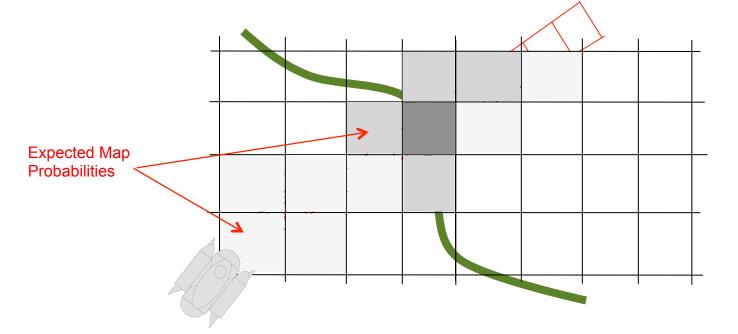
- Particle weights are calculated by comparing actual sonar measurements with expected sonar measurements
- Sonar measurements come in the form





Step 5: measurement_model_map

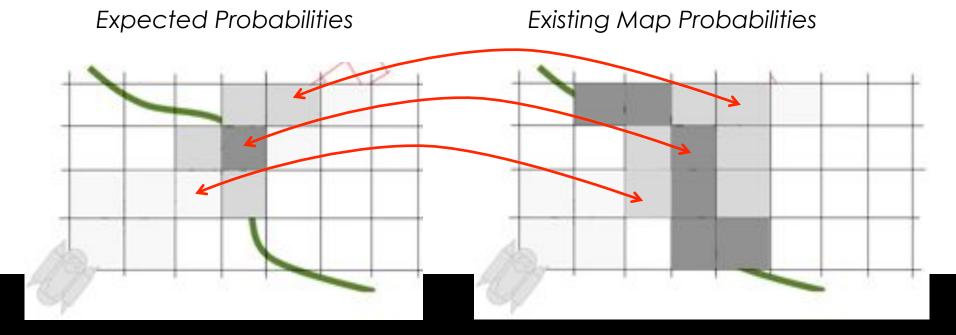
Given the state of the particle within a map, we can project which map cells the sonar would overlap, and calculate the expected map probabilities for those cells $p_z = [p^0 p^1 \dots p^{B'}]$

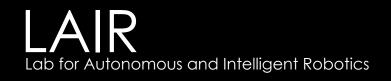




Step 5: measurement_model_map

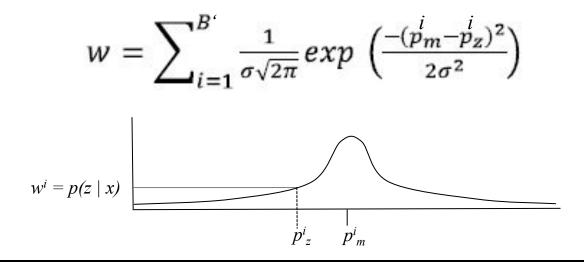
 Compare expected map probabilities with existing map probabilities.

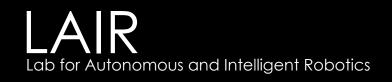




Step 5: measurement_model_map

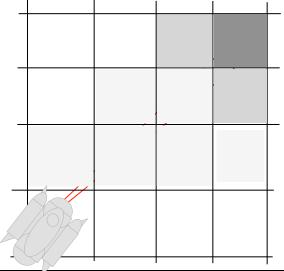
To calculate the particles weight w, we compare the expected map probabilities p_z with the map's current probabilities for the corresponding cells p_m



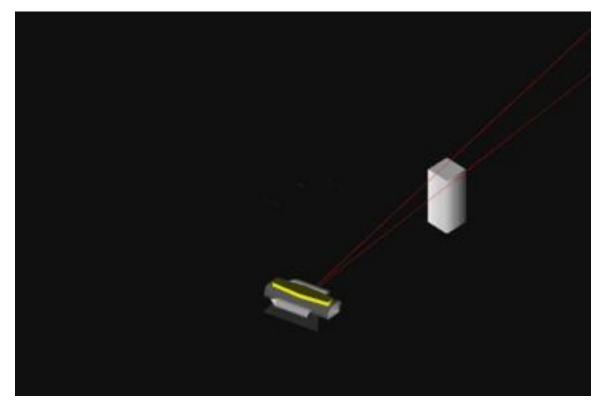


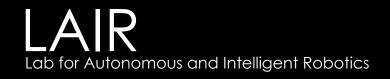
Step 6: updated_occupancy_grid

- Modify the occupancy likelihood of each cell m_{ij} using sonar measurement z.
- Add new probability to existing probability with logit() function



Results II: SLAM while moving

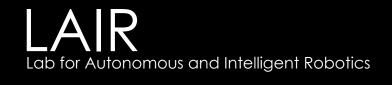


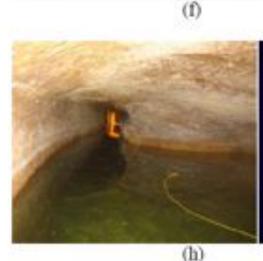


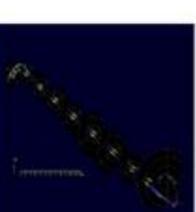
Results II: SLAM while moving

Table L SLAM with stationary sonar scans vs. SLAM in motion.

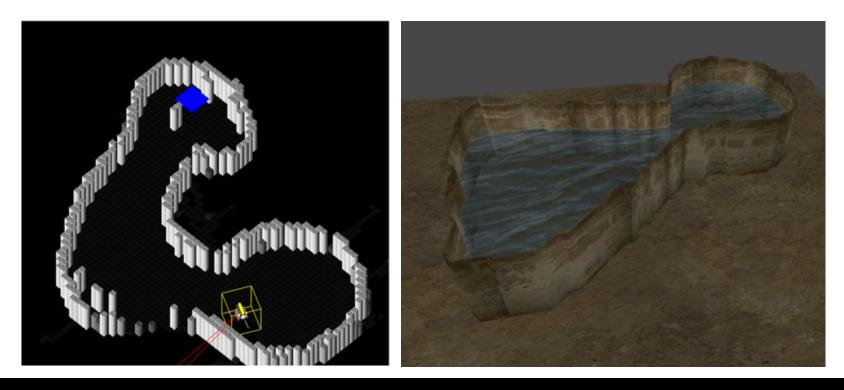
Map type	Site 24		Site 8		
	Length (m)	Width (m)	Length (m)		Std. dev.(m)
Manual mosaics	5.6	1.4	8.9	23	0.18
Stationary SLAM	5.4	1.2	8.9	2.3	0.16
SLAM in motion	5.1	1.0	9.6	2.1	0.33

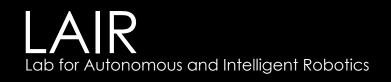






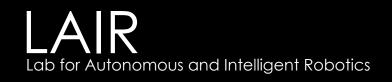
Results III: SLAM with stationary scans





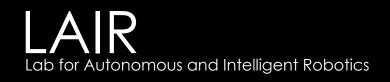
Conclusions

- First ever maps of ancient underwater cisterns created using robots
- Sonar rotation head is slow, requiring slow motion of robot for accurate mapping
- Tether snags, disturbances must be considered.
- Over 33 maps created.

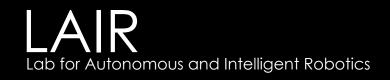


<u>Outline</u>

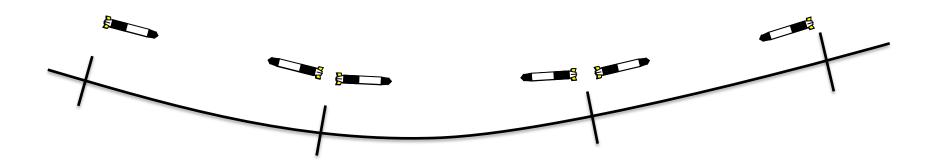
- Past Projects
- Maltese Cistern Mapping
- Distributed Multi Robot Boundary Tracking
- California Coastal Shark Tracking

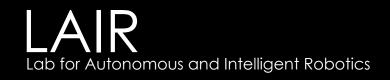


- Applications
 - Oil Spill edge monitoring with AUVs
 - Border Security
 - Ice Edge Following
- Associated Issues
 - Some events to sample may be dynamic
 - Some areas of the edge may require more time to sample than others

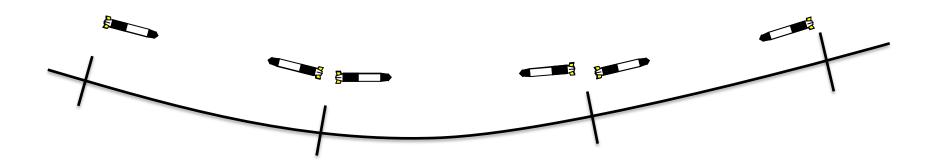


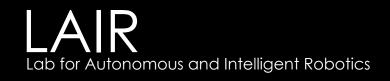
Boundary Edge Sampling – 3 Robots
 Out of Phase



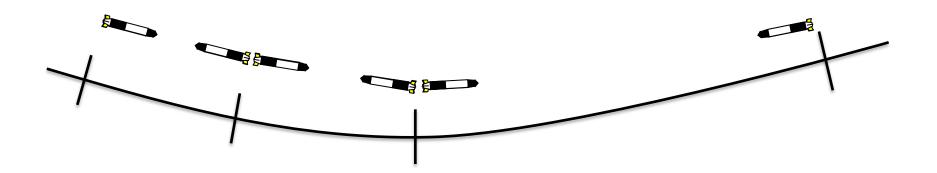


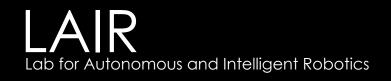
Boundary Edge Sampling – 3 Robots
 In Phase





- Boundary Edge Sampling 3 Robots
 - In Phase
 - Balance Workloads

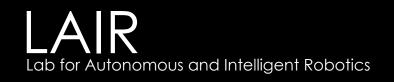




- Arctic Ice Edge Sampling
 - Arctic ice forms differently than in the past
 - Ice Algae forms integral part of ecosystem
 - Want to sample this algae and its activity
 - So, lets track the edge with several AUVs

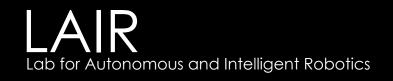
Photo by Doug Allen, CAMP Project



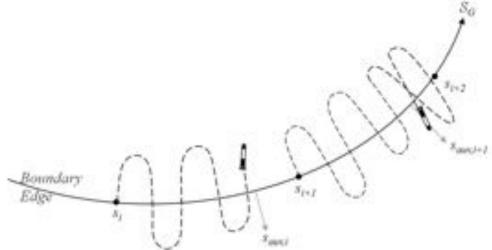


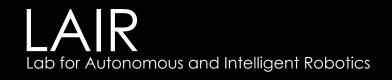
Related Work

- A. Joshi, et. al., "Experimental Validation of Cooperative Environmental Boundary Tracking with On-board Sensors", in American Control Conference, pp.2630-2635, June 2009.
- S. Charifa and M. Bikdash, "Adaptive boundary-following algorithm guided by artificial potential field for robot navigation", IEEE Workshop on Robotic Intelligence in Informationally Structured Space, pp.38-45, May 2009.
- D.A. Paley, et. al., "Cooperative Control for Ocean Sampling: The Glider Coordinated Control System", IEEE Transactions on Control Systems Technology, vol. 16, no.4, pp.735-744, July 2008.



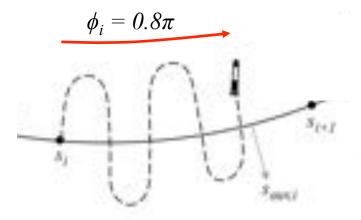
- Consider a continuous edge segment E
 - Define a coordinate frame where the S_G axis that follows E.
 - E is defined by two end points s_0 and s_n
 - E is partitioned into n sub-segments, each allocated to 1 robot.

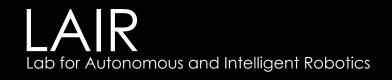




Define Phase

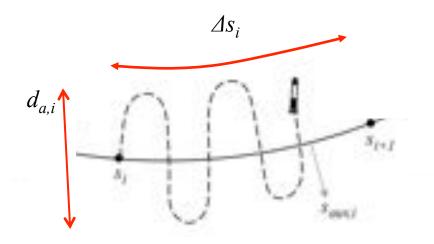
$$\phi_i = \left\{ \begin{array}{ll} \pi \frac{s_{rob,i} - s_i}{\Delta s_i} & if \ \dot{s}_{rob,i} > 0 \\ \pi \frac{s_{i+1} - s_{rob,i}}{\Delta s_i} + \pi & else \end{array} \right\}$$

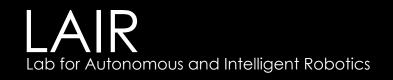




Define Workload

$$\Psi_i \approx d_{a,i} \Delta s_i$$





For every robot pair, it is desirable to balance
 Workload

$$e_{s,i} = \Psi_{i+1} - \Psi_i$$

Phase

$$e_{\phi,i} = \phi_{i+1} - \phi_i$$

- To minimize these errors, we want each robot *i* to autonomously control its
 - Sub-segment boundary

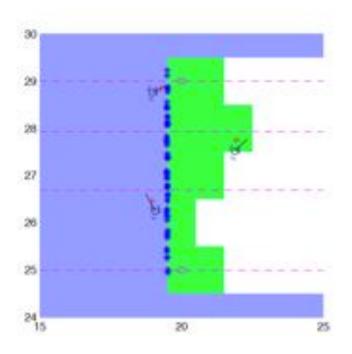
 S_i

 ϕ_i

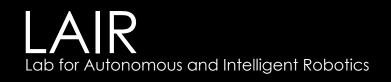
Phase position

Experiment Implementation

Matlab Simulation

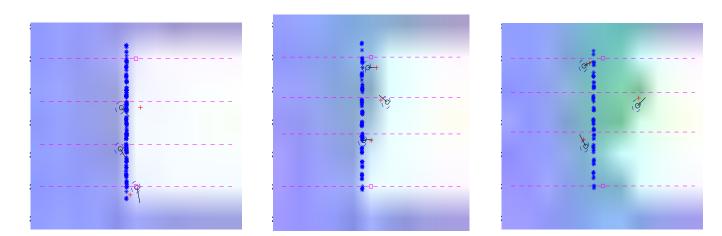


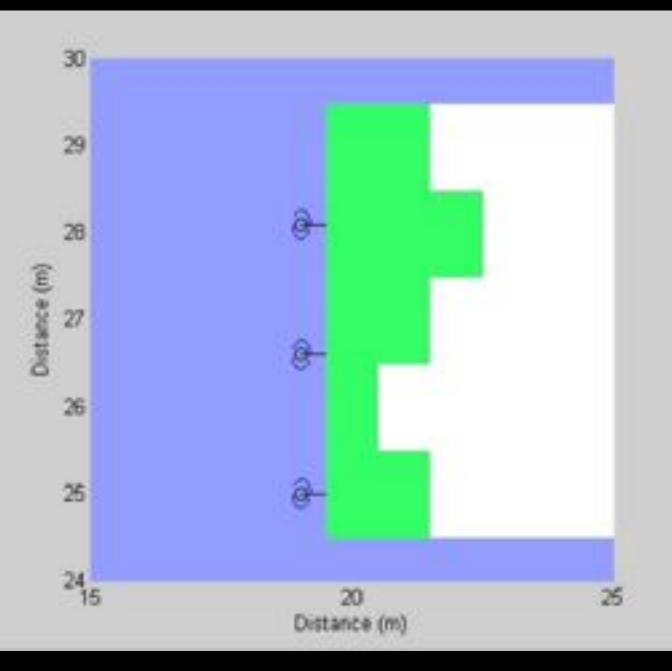
iRobot Creates

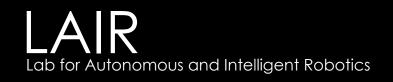


<u>Results</u>

- Three different Simulations
 - No algae covering
 - Half algae covering
 - Random algae covering

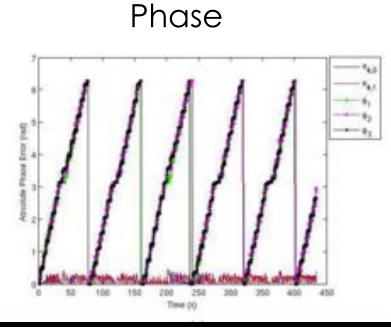


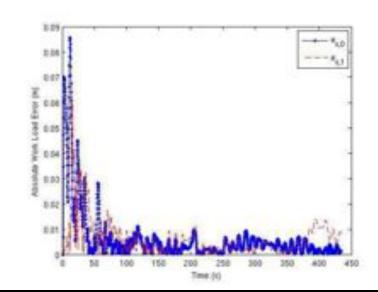




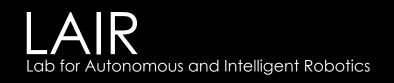
<u>Results</u>

Experimental Results Example (no algae)



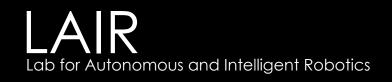


Workload



<u>Conclusions</u>

- Controller demonstrated to balance both workload and phase then tracking a boundary
- Tracking desired phase is not as accurate due to non linear paths
- Decentralized controller only needs local information



<u>Outline</u>

- Past Projects
- Maltese Cistern Mapping
- Distributed Multi Robot Boundary Tracking
- California Coastal Shark Tracking

California Shark Tracking

 Improve accuracy of shark state estimation by first estimating the shark's behavioral mode.

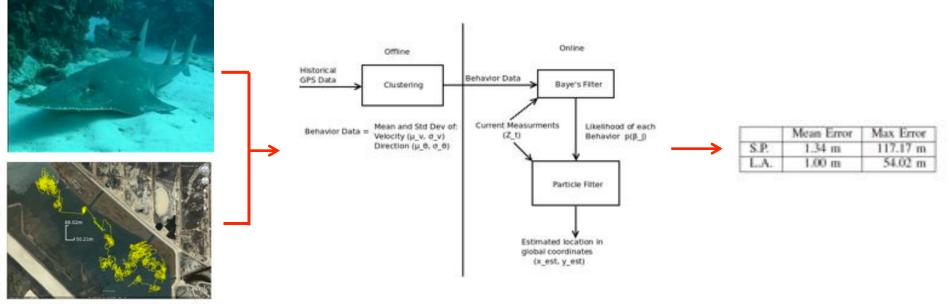
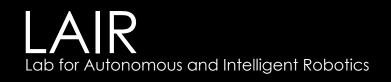
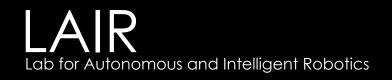


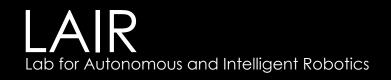
Fig. 1: Shovelnose Shark trajectory over 24 hours

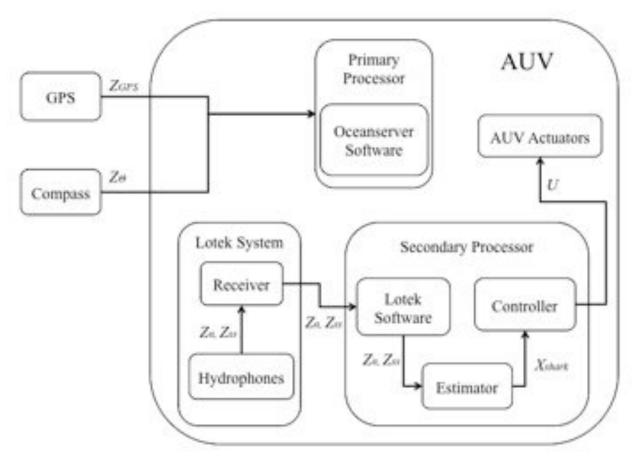


OceanServer Iver2 AUV

- Sensors
 - GPS (when at surface)
 - 3 DOF compass
 - Altimeter
 - ADCP
 - Video Cameras
- Actuators
 - Propeller
 - Control surfaces
- Battery life 24 hours
- Max Speed 4 knots
- Depth Rated to 100 meters









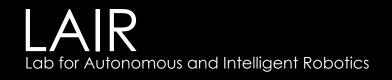
Given:

$$X_{auv,t} = [x_{auv} \ y_{auv} \ \theta_{auv} \ \dot{x}_{auv} \ \dot{y}_{auv} \ \dot{\theta}_{auv}]_t$$

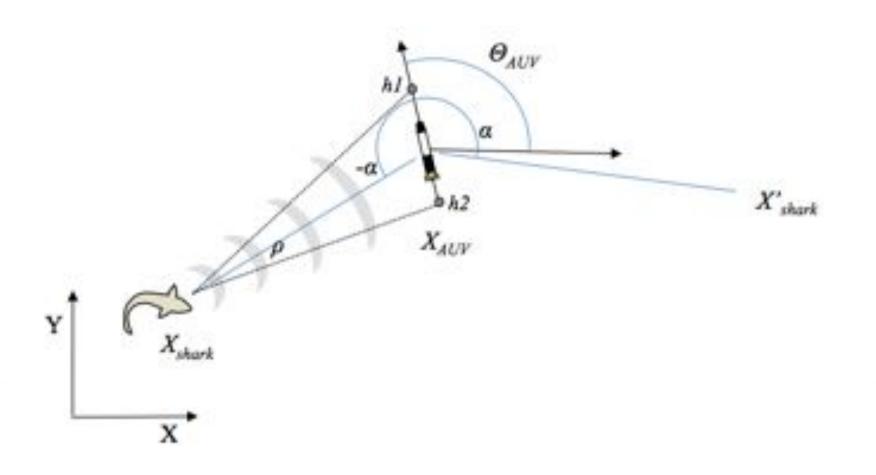
$$Z_t = [Z_{ss} \ Z_\alpha]_t$$

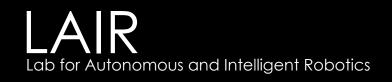
Determine:

 $X_{shark,t} = [x_{shark} \ y_{shark} \ \theta_{shark} \ v_{shark} \ w_{shark}]_t$



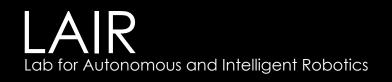
Estimation





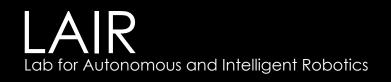
- What is a Particle this time?
 - A particle is an individual state estimate.
 - In our shark Tracking, a particle i has two components

- 1. The state is $X_{shark} = [x \ y \ \theta \ v \ w]$
- 2. The weight *w* that indicates it's likelihood of being the correct state.



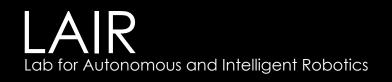
- Prediction Step
 - Let all particle states propagate according to a random sampling of a simple first-order motion model

Algorithm 1 PF.Shark State Estimator({XP}, Xuree, Za) 1: *IIPrediction* for all p particles do + randa 0, a randn(0, de shark + Unand + cos (9" and) + At rand + sin (Prand) + DI ěc 7: × ŵ. and then $\leftarrow \operatorname{stan2}(y_{mex} - y_{shark}^{p}, x_{mex} - x_{shark}^{p}) =$ α_{egg}^{p} 10: θ_{aut} $\alpha_{xxy}^p \leftarrow g(\alpha_{xxy}^p)$ 11: $w^p \leftarrow h(Z_\alpha, \alpha^p_{exp})$ 14: end for 15: 16 IlCorrection if a is valid then ${X^p}_{\text{temp}} \leftarrow {X^p}$ for all pfor all p particles do 19 $X^{p} \leftarrow RandParticle(\{X^{p}\}_{remap})$ 20end for 21: 22 end if



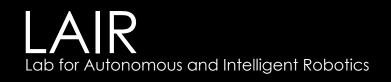
- Prediction Step
 - If a new Acoustic measurement is received, calculate the weight of each particle.

Algorithm 1 PF_Shark_State_Estimator({X^p}, X_{max}, Z_n) 1: If Prediction for all p particles do $v_{rand} \leftarrow v^p + randu[0, \sigma_s]$ $\theta_{rand}^{\prime} + \theta^{p} + randn(0, \sigma_{\theta})$ $x_{shark}^{r} \leftarrow x_{shark}^{r} + v_{rand}^{r} * \cos(\theta_{rand}^{r}) * \Delta t$ $+ v_{rand} * \sin(\theta_{rand}) * \Delta t$ Yahark + Yahark C.F. hars "Bares if or is valid then 9 $\alpha_{exp}^{p} \leftarrow \operatorname{stan2}(y_{exx} - y_{shark}^{p}, x_{exx} - x_{shark}^{p})$ 10: Bann $\alpha_{xxy}^p \leftarrow g(\alpha_{xxy}^p)$ 11: $w^p \leftarrow h(Z_\alpha, \alpha_{era}^p)$ 12 D: end if 14: end for 15 16 IlCorrection if a is valid then ${X^p}_{\text{temp}} \leftarrow {X^p}$ for all pfor all p particles do 19 $X^{p} \leftarrow RandParticle(\{X^{p}\}_{transp})$ 20end for 21: 22 end if



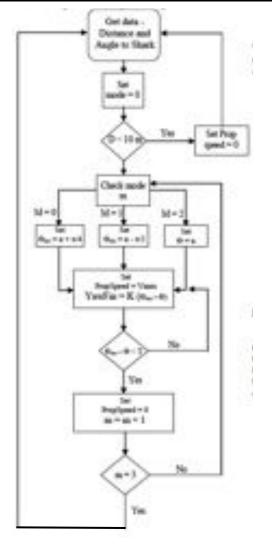
- Correction Step
 - If a new Acoustic measurement is received, resample the distribution by randomly repopulating it with particles according to their weights.

Algorithm 1 PF_Shark_State_Estimator({XP}, X_mr, Z_n) 1: If Prediction for all p particles do $v_{rand} \leftarrow v^p + randa[0, \sigma_s]$ $\theta_{rand} + \theta^p + randn(0, \sigma_{\theta})$ $x_{shark}^{r} \leftarrow x_{shark}^{r} + v_{rand}^{r} * \cos(\theta_{rand}^{r}) * \Delta t$ $+ v_{rand} * \sin(\theta_{rand}) * \Delta t$ Yahard + Yahard C.R.charg "Beres + Prand if a is valid then $\alpha_{exp}^{p} \leftarrow \operatorname{stan2}(y_{mex} - y_{shark}^{p}, x_{mex} - x_{shark}^{p}) -$ 10: Hanni $\alpha_{ess}^p \leftarrow g(\alpha_{ess}^p)$ 11: $w^p \leftarrow h(Z_\alpha, \alpha_{em}^p)$ 14: end for 15 0Correction if o is valid then ${X^p}_{\text{temp}} \leftarrow {X^p}$ for all p18 for all p particles do 19 $X^{p} \leftarrow RandParticle(\{X^{p}\}_{transp})$ 20end for 21 end if



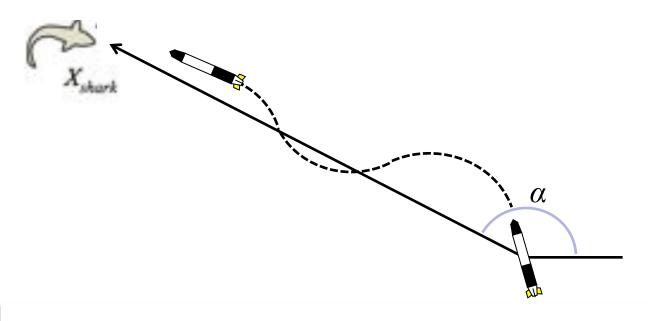
<u>Control</u>

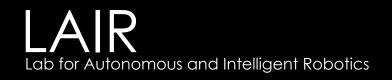
- Three mode controller
 - Based on current estimate of bearing to shark α:
 - 1. Track desired yaw angle $\theta_{des} = \alpha + \pi/4$
 - 2. Track desired yaw angle $\theta_{des} = \alpha \pi/4$
 - 3. Track desired yaw angle $\theta_{des} = \alpha$

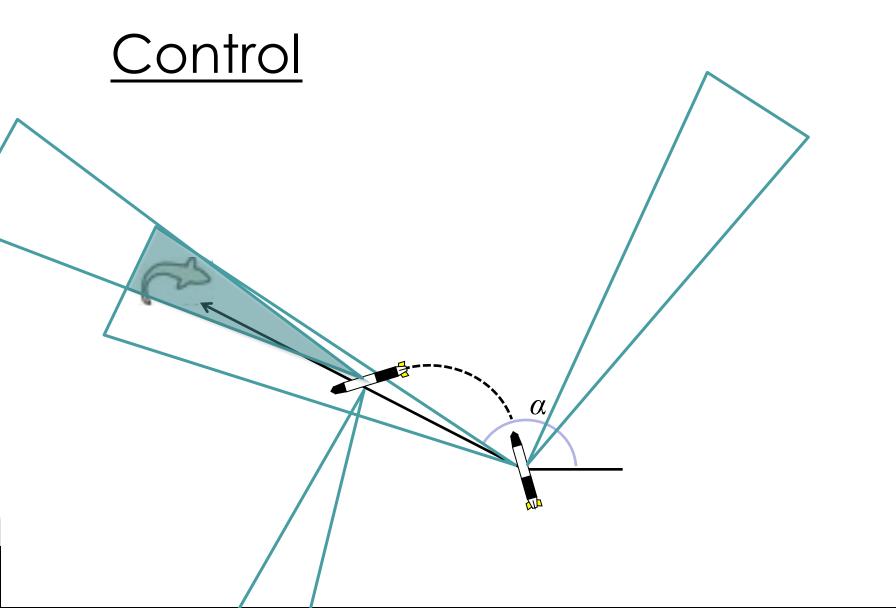




<u>Control</u>

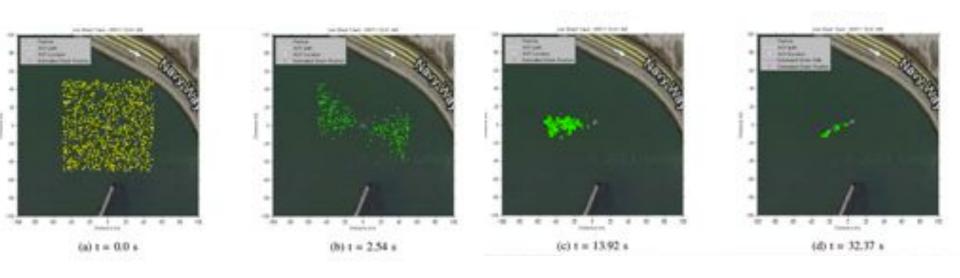


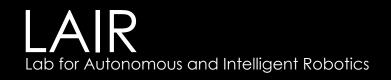




<u>Results</u>

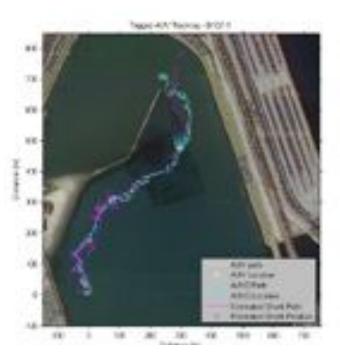
One AUV tracking a tagged second AUV

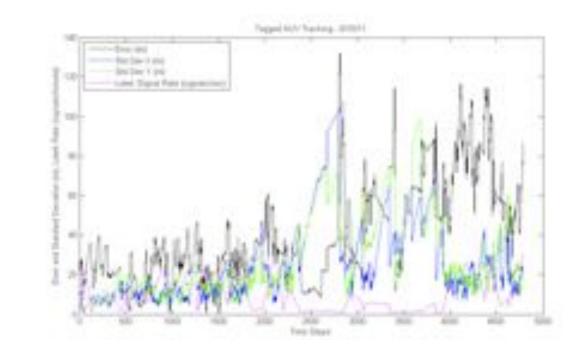


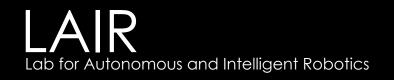


<u>Results</u>

One AUV tracking a tagged second AUV



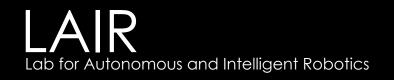




Experiments

SeaPlane Lagoon, Po

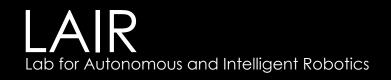
Angeles, CA



Experiments

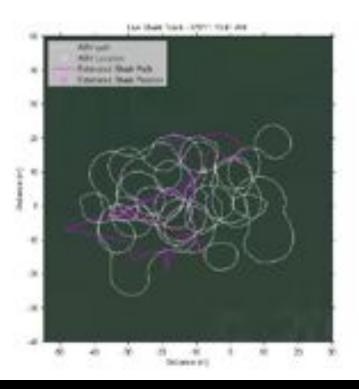
SeaPlane Lagoon, Po

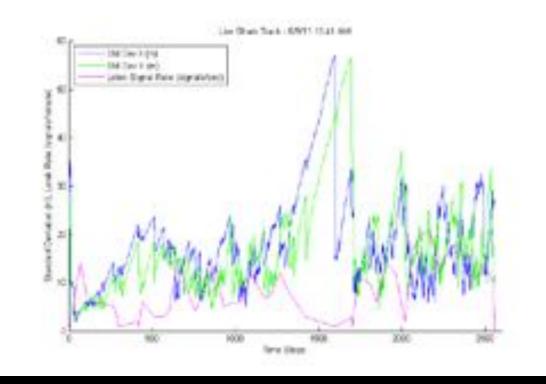
Angeles, CA

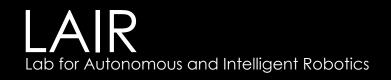


<u>Results</u>

One AUV tracking a tagged Leopard shark



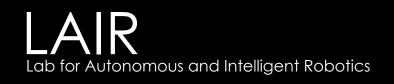




<u>Results</u>

Summary

Manite Name	Dete	Time	Mouton Tataph min	Ang Tana meters	Mile Toros marteres	Mai Eng.	Ans Cound
dash links.	6911	ID-IT AM	46,15	89	6/9	44	104.29 x 85.10
sharkTrack8.	APRIL 1	TONE MM.	27.28	100	6/6	44	62.87 5 90.10
Just Tix IC	RAL.	747794	41.77	. 6/6	64	- 44	TRUE NO.
dash DarkD	6WH	3.13 PM	1.41.27	14.4	4/4		10142 4 4444
are Think	Wide 11	11 DF AM	1.98.28	41.75	0.85	100.4	186.25 h 718.39
Adust/packs	8000	- 117 PM	4.17	7.84	8.25	13.40	18.56 x 45.56
encoury Table	10011	4.34.958	34.96	11.85	1.53	47.26	10.54 + 15.26
owners Tabl	6511	8-47 PM	10.34	21.76	313	47.34	ditt + Martin



Future Work

- AUVs for Shark Tracking
- 3D Cistern & cave mapping
- Maltese Coastal Shipwreck mapping
- Arctic under ice sampling
- Generalize decentralized controller for multiple edges
- Decentralized Multi-Robot Motion Planning
- Estimation and control of fish swarms

<u>Thank you</u>

• For more details see:

http://lair.calpoly.edu