The training error theorem for boosting

Here is pseudocode for the AdaBoost boosting algorithm presented in class:

Given: $(x_1, y_1), \ldots, (x_N, y_N)$ where $x_i \in X, y_i \in \{-1, +1\}$ Initialize $D_1(i) = 1/N$. For $t = 1, \ldots, T$:

- Train weak learner using training data weighted according to distribution D_t .
- Get weak hypothesis $h_t: X \to \{-1, +1\}$.
- Measure "goodness" of h_t by its weighted error with respect to D_t :

$$\epsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right] = \sum_{i:h_t(x_i) \neq y_i} D_t(i).$$

- Let $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right).$
- Update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
(1)

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final classifier:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Although the notation is different, this algorithm is the same as in R&N (Fig. 18.10 in the 2nd edition; Fig. 18.34 in the 3rd edition).

In this note, we prove the training error theorem, which states that the training error of H is at most

$$\exp\left(-2\sum_{t=1}^T \gamma_t^2\right)$$

where $\epsilon_t = \frac{1}{2} - \gamma_t$.

We prove this in three steps.

Step 1: The first step is to show that

$$D_{T+1}(i) = \frac{1}{N} \cdot \frac{\exp\left(-y_i f(x_i)\right)}{\prod_t Z_t}$$

where

$$f(x) = \sum_{t} \alpha_t h_t(x).$$

Proof: Note that Eq. (1) can be rewritten as

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

since y_i and $h_t(x_i)$ are both in $\{-1, +1\}$. Unwrapping this recurrence, we get that

$$D_{T+1}(i) = D_1(i) \cdot \frac{\exp\left(-\alpha_1 y_i h_1(x_i)\right)}{Z_1} \cdot \dots \cdot \frac{\exp\left(-\alpha_T y_i h_T(x_i)\right)}{Z_T}$$
$$= \frac{1}{N} \cdot \frac{\exp\left(-y_i \sum_t \alpha_t h_t(x_i)\right)}{\prod_t Z_t}$$
$$= \frac{1}{N} \cdot \frac{\exp\left(-y_i f(x_i)\right)}{\prod_t Z_t}.$$

Step 2: Next, we show that the training error of the final classifier H is at most

$$\prod_{t=1}^{T} Z_t.$$

Proof:

training error(H) =
$$\frac{1}{N} \sum_{i} \begin{cases} 1 & \text{if } y_{i} \neq H(x_{i}) \\ 0 & \text{else} \end{cases}$$
 by definition of the training error
= $\frac{1}{N} \sum_{i} \begin{cases} 1 & \text{if } y_{i}f(x_{i}) \leq 0 \\ 0 & \text{else} \end{cases}$ since $H(x) = \text{sign}(f(x))$ and $y_{i} \in \{-1, +1\}$
 $\leq \frac{1}{N} \sum_{i} \exp(-y_{i}f(x_{i}))$ since $e^{-z} \geq 1$ if $z \leq 0$
= $\sum_{i} D_{T+1}(i) \prod_{t} Z_{t}$ by Step 1 above
= $\prod_{t} Z_{t}$ since D_{T+1} is a distribution

Step 3: The last step is to compute Z_t .

We can compute this normalization constant as follows:

$$\begin{aligned} Z_t &= \sum_i D_t(i) \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases} \\ &= \sum_{\substack{i:h_t(x_i) = y_i \\ i:h_t(x_i) = y_i \\ i:h_t(x_i) = y_i \\ i:h_t(x_i) = y_i \\ i:h_t(x_i) \neq y_i \\ j:h_t(x_i) \neq y_i \\ j:h$$

Combining with Step 2 gives the claimed upper bound on the training error of H.