ODE and PDE Stability Analysis

COS 323



lL.ast Time

Finite difference approximations

Review of finite differences for ODE BVPs
PDEs

Phase diagrams

Chaos




Today

Stability of ODEs
Stability of PDEs

Review of methods for solving large, sparse
systems

Multi-grid methods



Reminders

- Homework 4 due next Tuesday

 Homework 5, final project proposal due
Friday December 17

 Final project: groups of 3-4 people



(L]

Stability of OD]

A solution of the ODE y’' = f(z,y) 1s stable
if for every ¢ > Othereisa o > 0 st

if y(¢) satisfies the ODE and H)Af(to) — y(tO)H <0

then |[y(t) - y(t)| =eforall =t

* |.e., rules out exponential divergence if initial
value is perturbed



- asymptotically stable solution:

15(1) = y(1)| =0 as 1 —0




- stable but not asymptotically so:

=t




e unstable:




Determining stability

. General case: y’ = f(t, y)

« Simpler: linear, homogeneous system:
y = Ay
* Even simpler: y' = Ay



y = Ay

Solution: y(t) = y,eM

If A > 0: exponential divergence : every
solution is unstable

If A < 0O: every solution is asymptotically stable

If A complex:

— eM = egat (cos(bt) + j sin(bt))

— Re(A) is a. This is oscillating component multiplied
by a real amplification factor.

— Re(A) > 0: All unstable; Re(A) < 0: All stable.



Stability: Linear system

° y =Ay

 if A is diagonalizable - eigenvectors are linearly
indep%ndent

Y, = E o u. where u, are eigenvectors of A
i=l,

y(t) = E aue’' is a solution satisfying initial condition
i=1

» Component by component: if Re(A;) > 0 then growing,
Re(A.) < 0 decaying; Re(A;) = 0 oscillating

- Non-diagonalizable: requires all Re(A;) <= 0, and
Re(A,) < 0 for any non-simple eigenvalue



Stability with Variable Coetficients

* y(t) = At) y(b)
 Signs of eigenvalues may change with t, so
eigenvalue analysis hard



Stability, in General

y =1(t,y)

Can linearize ODE using truncated Taylor Series:
2/ =J,(t,y(1))z

where J, 1s Jacobian of f with respect to y

{J (1, )} 0f(9(yty)

If autonomous then’ eigenvalue analysis yields same
results as for linear ODE; otherwise, difficult to
reason about eigenvalues

NOTE: J;evaluated at certain value of y, (i.e., for a
particular solution): so changing y, may change
stability properties



Summary so far

* A solution to an ODE may be stable or unstable,
regardless of method used to solve it

* May be difficult to analyze for non-linear, non-
homogenous ODEs

* Yy =y is a good proxy for understanding stability of

more complex systems, where A functions like the
eigenvalues of J;



Stability of ODE vs Stability of Method

Stability of ODE solution: Perturbations of solution do not
diverge away over time

Stability of a method:

— Stable if small perturbations do not cause the solution to diverge
from each other without bound

— Equivalently: Requires that solution at any fixed time t remain
bounded as h — O (i.e., # steps to get to t grows)

How does stability of method interact with stability of underlying
ODE?

— ODE may prevent convergence (e.g., A > 0)

— Method may be unstable even when ODE is stable

— ODE can determine step size h allowed for stability, for a given
method



Stability of Fuler’s Method

y' = Ay: Solution is y(t) = y,e

Euler's method: y, ., =y, + hiky,

Yier = (1 + DAy,
Significance?

Y = (1 + hi)<y,

(1 + hi) is growth factor

If
If

1+ h
1+ h

<= 1: Euler’s is stable

> 1: Euler’s is unstable



Stability region for

Hulet’s method, y’ = Ay

* hA must be in circle

of radius 1 centered at -1:
A lm

l.e., For A <0, stable only if h <=-2/A; can be unstable even

when ODE stable



Stability for Euler’s method, general case

e, =+ h,jf)ek +1 .,

where 7, = [ J,(1,.av, + (1= )y(1,) da

» Growth factor: 1+4,J,
— Compare to [1 + hA|

. Stable if spectral radius p(I+#1,J,) =<1
— Satisfied if all eigenvalues of &,J,
lie inside the circle



Stability region for Euler’s method,

y = f(t, y)
- Eigenvalues of /,J, inside
A lm

Re



Discussion: Fuler’s Method

- Stability depends on h, J;
« Haven't mentioned accuracy at all

* Accuracy is O(h)

— Can always decrease h without penalty if A real



Backward Euler

° y’ — )\‘y
* Yie1 = Yk T DAYy
* (1-hA)Yie1 = Vi

BV
Yi = (M) Yo

. . 1
so stability requires

1-hA

<1




Stability Region for Backward Euler,
y =My

* Region of stability: ha in left half of complex plane:

A lm

v

l.e., anyh>0whenRe (A) <0



Stability for Backward Fuler, general case

Amplification factor is (I — hJ;)”’

Spectral radius < 1 if eigenvalues of hJ;
outside circle of radius 1 centered at one

l.e., if solution is stable, then Backward Euler
Is stable for any positive step size:
unconditionally stable

Step size choice can manage efficiency vs

accuracy without concern for stability
— Accuracy is still O(h)



Stability for Trapezoid Method

Vi =V +h(Ay, + Ay,,)/2

- 1+ hA/2 ‘
Y=\ has2)

so stable 1f L+ hA /2 <1

1-hA/2
(holds for any h > 0 when Re(A) <0)

* l.e., unconditionally stable

* In general: Amplification factor =

I+3h] YA-5hT )"

spectral radius < 1 if eigenvalues of AJ , lie in left half of plane



Implicit methods

« Generally larger stability regions than explicit
methods

* Not always unconditionally stable
— l.e., step size does matter sometimes



Stittness and Stability

« fory =Ay:
- stiff over interval b — a if
(b - a) Re(A) << -1
l.e., A may be negative but large in magnitude (a
stable ODE)
Euler's method stability requires [1 + h A | <1
therefore requires VERY small h

Backward Euler fine: any step size still OK (see
graph)



Conditioning of Boundary Value Problems

* Method does not travel “forward” (or “backward”) in
time from an initial condition

* No notion of asymptotically stable or unstable

* Instead, concern for interplay between solution

modes and boundary conditions
— growth forward in time is limited by boundary condition at b
— decay forward in time is limited by boundary condition at a

* See “Boundary Value Problems and Dichotomic
Stability,” England & Mattheij, 1988



PDEs




Finite Ditference Methods: Example

@ Consider heat equation

Ut = CUgpy, 0<xz <1, t >0

with initial and boundary conditions

u(0,z) = f(x), u(t,0) = a, u(t,1) =3

k+1 e a
k+1 k k k k I
W T, Uiy —2U; +U g ke .

At (Az)?

h—1 e a a



Example, Continued

* Finite difference method yields recurrence relation:

. At
k+1 K K ko, k . |
u; ' =u; +c (Az)? (l"z'+1 — 2u; + u.i_l) , 1=1,...,m
« Compare to semi-discrete method with spatial mesh
size AX:
N € . .
yz(t) T (A;l.’.)2 (y’L—}-l(t) o Zyz(t) + yz—l(t)) ’ L = 1~. ceey N

- Finite difference method is equivalent to solving each
y; using Euler’'s method with h= At



Recall:

Stability region for Euler’s method

- Requires eigenvalues of h,J; inside
Im
A

Re



Example, Continued

What is J; here?

2

1

I _ C 0
J (Ax)? _
0

A is Jf, so eigenvalues of AtA must lie inside the circle

i.e., At <= (Ax)2/ 2c

Quite restrictive on At!



Alternative Stencils

k+1 . T * k41 . ®
J * ® h e T °
k—1 e ° o E—1 e o o

1 — 1 ! + 1 r — 1 ) L+ 1

- Unconditionally stable with respect to At

* (Again, no comment on accuracy)



Lax Equivalence Theorem

* For a well-posed linear PDE, two necessary and
sufficient conditions for finite difference scheme to
converge to true solution as Ax and At — O :

— Consistency: local truncation error goes to zero
— Stability: solution remains bounded
— Both are required

« Consistency derived from soundness of

approximation to derivatives as At — 0
— i.e., does numerical method approximate the correct PDE?

« Stability: exact analysis often difficult (but less difficult
than showing convergence directly)



Reasoning about PDE Stability

« Matrix method
— Shown on previous slides

* Domains of dependence

* Fourier / Von Neumann stability analysis



Domains of Dependence

« CFL Condition: For each mesh point, the domain of
dependence of the PDE must lie within the domain of
dependence of the finite difference scheme

At

unstable stable



Notes on CFL Conditions

Encapsulated in “CFL Number” or “Courant
number” that relates At to Ax for a particular
equation

CFL conditions are necessary but not
sufficient

Can be very restrictive on choice of At

Implicit methods may not require low CFL
number for stability, but still may require low
number for accuracy



Fourier / Von Neumann Stability Analysis

 Also pertains to finite difference methods for PDEs

 Valid under certain assumptions (linear PDE, periodic
boundary conditions), but often good starting point

* Fourier expansion (!) of solution
u(x,t) = Eak(nAt)eiijx
* Assume

a,(nAt) = (5, )"

— Valid for linear PDEs, otherwise locally valid

— Will be stable if magnitude of & is less than 1:
errors decay, not grow, over time



Review of Methods for Large, Sparse

Systems




Why the need?

* All BVPs and implicit methods for time-
dependent PDEs yield systems of equations

 Finite difference schemes are typically sparse

-2 1 0 0
1 -2 1 0
/ ¢ 0 1 =2 0| 4y = Ay




Review: Stationary Iterative Methods for

Linear Systems

- Can we formulate g(x) such that x*=g(x*)
when Ax* - b =07

* Yes:let A=M - N (for any satisfying M, N)
and let g(x) = Gx + ¢ = M-''Nx + M-b

¢ Check: if x* = g(x*) = M-'Nx* + M-b then
Ax* = (M — N)(M-'Nx* + M-'b)
= Nx*+ b + N(M-'Nx* + M-'b)
= Nx* + b — Nx*
=b



So what?

- We have an update equation:
X&) = M-'Nxk + M-b

* Only requires inverse of M, not A

* We can choose M to be nicely invertible (e.g.,
diagonal)



Jacobi Method

* Choose M to be the diagonal of A

 Choose Ntobe M-—A=-(L+U)
— Note that A I= LU here

* SO0, use update equation:
xk*1) =D1(b— (L + U)xK)



Jacobt method

 Alternate formulation: Recall we've got
aj Ty + 1T +-- -+ ATy = by

1 T1 + AT + -+ ATy = by

A1, + Q22 + -+ ATy = bm

- Store all xX

* |n each iteration, set b E (k)
(k+1) J=1 l‘] J

ii



Gauss-Seidel

- Why make a complete pass through
components of x using only xX, ignoring the
x,&*1) we’ve already computed?

b, — E )
(k+1) j=i At

Jacobl: x,

ll

I W
(k+1) j>i Y j<i Y7

G.S.: x

a..

I



Notes on (Gauss-Seidel

« Gauss-Seidel is also a stationary method
A=M-NwhereM=D+L,N=-U

« Both G.S. and Jacobi may or may not
converge
— Jacobi: Diagonal dominance is sufficient condition

— G.S.: Diagonal dominance or symmetric positive
definite

* Both can be very slow to converge



Successive Over-relaxation (SOR)

et x(k+1) = (1 _W)X(k) + W XGS(k+1)

f w =1 then update rule is Gauss-Seidel

fw < 1: Under-relaxation

— Proceed more cautiously: e.g., to make a non-
convergent system converge

If 1 <w < 2: Over-relaxation

— Proceed more boldly, e.g. to accelerate
convergence of an already-convergent system

If w> 2: Divergence. ®



Slow Convergence

All these methods can be very slow

Can have great initial progress but then slow
down

Tend to reduce high-frequency error rapidly,
and low-frequency error slowly

Demo: http://www.cse.illinois.edu/iem/fft/
itrmthds/



Multigrid Methods

See Heath slides



For more info

* http://academicearth.org/lectures/multigrid-
methods



