Ordinary Differential Equations Part 2

COS 323

Last time

- Differential equations
- Numerical methods for solving ODE initial value problems
 - Euler's method
 - Heun's method
 - Runge-Kutta methods
 - Adaptive methods (e.g., adaptive R. K.)

Today

- More methods for initial value problems
 - Stiff ODEs
 - Backward Euler
 - Multi-step methods
 - Adams methods
- Boundary value problems
 - Definition
 - Shooting method
 - Finite difference method
 - Collocation method

Stiff ODEs and Implicit Methods

Stiff ODE

 May involve transients, rapidly oscillating components: rates of change much smaller than interval of study

from Chapra & Canale

Non-stiff ODE

Stiff ODE

See http://www.cse.illinois.edu/iem/ode/stiff/

Consider scalar ODE

$$y' = -100y + 100t + 101$$

with initial condition y(0) = 1

- General solution is y(t) = 1 + t + ce^{-100t}, and particular solution satisfying initial condition is y(t) = 1 + t
 (i.e., c = 0)
- Since solution is linear, Euler's method is theoretically exact for this problem
- However, to illustrate effect of using finite precision arithmetic, let us perturb initial value slightly

 With step size h = 0.1, first few steps for given initial values are

t	0.0	0.1	0.2	0.3	0.4
exact sol.	1.00	1.10	1.20	1.30	1.40
Euler sol.	0.99	1.19	0.39	8.59	-64.2
Euler sol.	1.01	1.01	2.01	-5.99	67.0

- Computed solution is incredibly sensitive to initial value, as each tiny perturbation results in wildly different solution
- Any point deviating from desired particular solution, even by only small amount, lies on different solution, for which c ≠ 0, and therefore rapid transient of general solution is present

Solving Stiff ODEs

- Adaptive Runge-Kutta?
 - Step size for stability may be VERY small, even when y not changing rapidly
- Implicit methods are often preferred method

Euler's method

• Known:
$$\frac{dy}{dt} = f(t,y)$$

 $y = y_0$ at $t = t_0$

• What is y_1 at time $t_1 = t_0 + h$?

Backward (Implicit) Euler's method

• Known:
$$\frac{dy}{dt} = f(t,y)$$

 $y = y_0$ at $t = t_0$

• What is y_1 at time $t_1 = t_0 + h$?

$$y_1 = y_0 + f(t_1, y_1)h$$

• How to solve?

- Fixed-point iteration or Newton-Raphson

Implicit Methods

- Backward Euler
 - "Unconditionally stable" ^(C)
 - Unstable ODE still problematic
 - Can take larger step sizes
 - Can be more efficient, even given root-finding at each step!
 - Global error O(h) ⊗
- Higher-order methods exist
 - e.g., second-order implicit trapezoid, implicit R.K.
 methods…

Multistep methods

Single step methods

- Use information at a single t_i to predict
 y_{i+1} at t_{i+1}
- Includes Euler, Heun, R.K., etc.

Multistep methods

 Use information we've already learned from points at t_{i-1}, t_{i-2}, etc.

Heun (from last class)

- Predict y_i, then use slope at y_i to correct the prediction.
- Predictor: Euler's method $y_{i+1}^0 = y_i + f(t_i, y_i)h$
- Corrector: Trapezoidal rule

$$y_{i+1} = y_i + \frac{f(t_i, y_i) + f(t_i, y_{i+1}^0)}{2}h$$

Non-self-starting Heun

- Use information from a previous point to improve prediction
- Old predictor:

$$y_{i+1}^0 = y_i + f(t_i, y_i)h$$

• New predictor:

$$y_{i+1}^0 = y_{i-1} + f(t_i, y_i)2h$$

Improves accuracy of predictor from O(h²) to O(h³)

Non-self-starting Heun

Predictor & Midpoint Rule

$$\int_{y_{i-1}}^{y_{i+1}} dy = \int_{t_{i-1}}^{t_{i+1}} f(t, y) dt$$
$$y_{i+1} - y_{i-1} = \int_{t_{i-1}}^{t_{i+1}} f(t, y) dt$$

 $y_{i+1} \cong y_{i-1} + 2hf(t_i, y_i)$

Corrector & Trapezoidal Rule

$$dy/dt = f(t,y)$$

$$\int_{y_i}^{y_{i+1}} dy = \int_{t_i}^{t_{i+1}} f(t,y) dt$$

$$y_{i+1} - y_i = \int_{t_i}^{t_{i+1}} f(t,y) dt$$

$$y_{i+1} \cong y_i + \frac{f(t_i, y_i) + f(t_{i+1}, y_{i+1})}{2}h$$

NSS Heun Error

- Use knowledge of error of midpoint and trapezoidal rules to determine O(h³) for both predictor and corrector
- Can relate error of predictor and corrector to get error estimate for a step:

$$E_{c} = -\frac{y_{i+1}^{0} - y_{i+1}^{corrected}}{5}$$

 Use error to modify corrector and/or adaptively adjust step size

More multi-step methods

- Open formula used as predictor to obtain initial estimate, then closed formula used to correct the predictor
- Can use higher-order predictors and correctors...

Newton-Cotes formulas

• For **open** formulas:

$$y_{i+1} = y_{i-n} + \int_{t_{i-n}}^{t_{i+1}} f_n(t,y) dt$$

- where f_n(t,y) is an n-point interpolating polynomial (e.g., n=1 yields midpoint rule)
- Closed:

$$y_{i+1} = y_{i-n+1} + \int_{t_{i-n+1}}^{t_{i+1}} f_n(t,y) dt$$

n=2 yields Trapezoidal rule; n=3 yields Simpson's rule; etc.

Adams-Bashforth Formulas

- Open formulas
- Use forward Taylor series expansion around t_i and backward differences to approximate derivatives of f

$$y_{i+1} = y_i + f_i h + \frac{f'_i}{2} h^2 + \frac{f''_i}{6} h^3 + \dots$$

Approximate f'_i as $f'_i = \frac{f_i - f_{i-1}}{h} + \frac{f''_i}{2} h^2 + O(h^2)$

Adams-Moulton Formulas

- Closed formulas
- Use backward Taylor series expansion around t_i and backward differences to approximate derivatives of f

$$y_{i} = y_{i+1} - f_{i+1}h + \frac{f_{i+1}'}{2}h^{2} + \frac{f_{i+1}''}{6}h^{3} + \dots$$

Approximate f_{i+1}' as $f_{i+1}' = \frac{f_{i+1} - f_{i}}{h} + \frac{f_{i+1}''}{2}h^{2} + O(h^{2})$

About the Adams formulas

- Choice of truncation point for Taylor Series estimate yields formulas of different order
- Adams formula of order n incurs truncation error of O(hⁿ⁺¹)
- Can couple Adams-Bashforth predictor with Adams-Moulton corrector
- 4th-order Adams Method: very popular

Comments on Multistep Methods

- Non-self-starting
- Changing step size is complicated
- Predictor and corrector yield good local error estimate
- Implicit** methods have greater stability than explicit methods, but require iterative correction
 **e.g., Adams-Moulton by itself is implicit
- If order >2, an implicit method is never unconditionally stable
- Especially effective for stiff equations

Review of IVP methods

- Euler's: 1-step, O(h), 1st order R.K.
- Heun: 1-step, O(h²), 2ndorder R.K., iterative correction step
- Second-order Ralston: 1-step, O(h²), optimal 2nd-order R.K.
- 4th-order Runge-Kutta: O(h⁴), very popular

Embedded Runge-Kutta: O(h⁵), allows efficient step-size adjustment

- Backward Euler: O(h), stable, usually requires root-finding
- Non-self-starting Heun:
 O(h³), multi-step, iterative correction
- Fourth-order Adams:
 O(h⁵), multi-step, popular

Boundary-Value Problems

IVPs vs BVPs

- An nth-order ODE requires n auxiliary conditions
- Can transform nth-order ODE into system of n firstorder ODEs
- Initial Value Problems
 - All n conditions specified at same value of dependent variable (e.g., t₀)
- Boundary Value Problems
 - Conditions known at different values of t (often extreme values)
 - Can't start with one value of t for which we know the solution!

Example BVP

- y" = F/m
- IVP: y=0 at t=0, y' = 0 at t=0
- BVP: y=0 at t=0, y=10 at t=100
 or y = 0 at t = 0, y'=.3 at t=100

Translating higher-order ODE into system of equations

For *k*-th order ODE

$$y^{(k)}(t) = f(t, y, y', \dots, y^{(k-1)})$$

define k new unknown functions

$$u_1(t) = y(t), \ u_2(t) = y'(t), \ \dots, \ u_k(t) = y^{(k-1)}(t)$$

Then original ODE is equivalent to first-order system

$$\begin{bmatrix} u_1'(t) \\ u_2'(t) \\ \vdots \\ u_{k-1}'(t) \\ u_k'(t) \end{bmatrix} = \begin{bmatrix} u_2(t) \\ u_3(t) \\ \vdots \\ u_k(t) \\ f(t, u_1, u_2, \dots, u_k) \end{bmatrix}$$

Two-point BVP for second-order scalar ODE

$$u'' = f(t, u, u'), \qquad a < t < b$$

with BC

$$u(a) = \alpha, \qquad u(b) = \beta$$

is equivalent to first-order system of ODEs

$$\begin{bmatrix} y_1'\\y_2' \end{bmatrix} = \begin{bmatrix} y_2\\f(t,y_1,y_2) \end{bmatrix}, \quad a < t < b$$
with separated linear BC
$$\begin{bmatrix} 1 & 0\\0 & 0 \end{bmatrix} \begin{bmatrix} y_1(\hat{a})\\y_2(a) \end{bmatrix} + \begin{bmatrix} 0 & 0\\1 & 0 \end{bmatrix} \begin{bmatrix} y_1(b)\\y_2(b) \end{bmatrix} = \begin{bmatrix} \alpha\\\beta \end{bmatrix}$$