
Ordinary Differential Equations 
Part 2 

COS 323 



Last time 

•  Differential equations 

•  Numerical methods for solving ODE initial 
value problems 
– Euler’s method 
– Heun’s method 
– Runge-Kutta methods 
– Adaptive methods (e.g., adaptive R. K.) 



Today 

•  More methods for initial value problems 
–  Stiff ODEs 
–  Backward Euler 
–  Multi-step methods 

•  Adams methods 

•  Boundary value problems 
–  Definition 
–  Shooting method 
–  Finite difference method 
–  Collocation method 



Stiff ODEs and Implicit Methods 



Stiff ODE 

•  May involve transients, rapidly oscillating 
components: rates of change much smaller 
than interval of study 

from Chapra & Canale 



Non-stiff ODE 



Stiff ODE 

See http://www.cse.illinois.edu/iem/ode/stiff/ 



Another Stiff ODE 



See http://www.cse.illinois.edu/iem/ode/stiff/ 



Solving Stiff ODEs 

•  Adaptive Runge-Kutta? 
– Step size for stability may be VERY small, even 

when y not changing rapidly  

•  Implicit methods are often preferred method 



Euler’s method 

•  Known: 

•  What is y1 at time t1=t0 + h? 

€ 

dy
dt

= f (t,y)

y = y0 at t = t 0

€ 

y1 = y0 + f (t0,y0)h

t0 t1 

y0 
y0+f(t0,y0)h 



Backward (Implicit) Euler’s method 

•  Known: 

•  What is y1 at time t1=t0 + h? 

•  How to solve? 
– Fixed-point iteration or Newton-Raphson 

€ 

dy
dt

= f (t,y)

y = y0 at t = t 0

€ 

y1 = y0 + f (t1,y1)h



Implicit Methods 

•  Backward Euler 
–  “Unconditionally stable”  

•  Unstable ODE still problematic 

– Can take larger step sizes  
•  Can be more efficient, even given root-finding at each 

step! 

– Global error O(h)   

•  Higher-order methods exist 
–  e.g., second-order implicit trapezoid, implicit R.K. 

methods… 

   



Multistep methods 



Single step methods 

•  Use information at a single ti to predict 
 yi+1 at ti+1 

•  Includes Euler, Heun, R.K., etc. 

ti-1 ti+1 

yi-1 
yi 

ti 

yi+1 



Multistep methods 

•  Use information we’ve already learned from 
points at ti-1, ti-2, etc. 

ti-1 ti+1 

yi-1 
yi 

ti 

yi+1 



Heun (from last class) 

•  Predict yi, then use slope at yi to correct the 
prediction. 

•  Predictor: Euler’s method 

•  Corrector: Trapezoidal rule 

€ 

yi+1
0 = yi + f (ti,yi)h

€ 

yi+1 = yi +
f (ti,yi) + f (ti,yi+1

0 )
2

h



Non-self-starting Heun 

•  Use information from a previous point to 
improve prediction 

•  Old predictor: 

•  New predictor: 

•  Improves accuracy of predictor from O(h2) to 
O(h3) 

€ 

yi+1
0 = yi + f (ti,yi)h

€ 

yi+1
0 = yi−1 + f (ti,yi)2h



Non-self-starting Heun 



Predictor & Midpoint Rule 

€ 

dy
yi−1

yi+1∫ = f (t,y)dt
ti−1

ti+1∫

yi+1 − yi−1 = f (t,y)dt
ti−1

ti+1∫
yi+1 ≅ yi−1 + 2hf (ti,yi)



Corrector & Trapezoidal Rule 

€ 

dy /dt = f (t,y)

dy
yi

yi+1∫ = f (t,y)dt
ti

ti+1∫

yi+1 − yi = f (t,y)dt
ti

ti+1∫

yi+1 ≅ yi +
f (ti,yi) + f (ti+1,yi+1)

2
h



NSS Heun Error 

•  Use knowledge of error of midpoint and 
trapezoidal rules to determine O(h3) for both 
predictor and corrector 

•  Can relate error of predictor and corrector to 
get error estimate for a step: 

•  Use error to modify corrector and/or 
adaptively adjust step size 

€ 

Ec = −
yi+1
0 − yi+1

corrected

5



More multi-step methods 

•  Open formula used as predictor to obtain 
initial estimate, then closed formula used to 
correct the predictor 

•  Can use higher-order predictors and 
correctors… 



Newton-Cotes formulas 

•  For open formulas: 

where fn(t,y) is an n-point interpolating 
polynomial (e.g., n=1 yields midpoint rule) 

•  Closed: 

n=2 yields Trapezoidal rule; n=3 yields 
Simpson’s rule; etc. 

€ 

yi+1 = yi−n+1 + fn (t,y)dtti−n+1

ti+1∫
€ 

yi+1 = yi−n + fn (t,y)dtti−n

ti+1∫



Adams-Bashforth Formulas 

•  Open formulas 

•  Use forward Taylor series expansion around 
ti and backward differences to approximate 
derivatives of f 

€ 

yi+1 = yi + fih +
ʹ′ f i

2
h2 +

ʹ′ ʹ′ f i
6

h3 + ...

Approximate ʹ′ f i  as ʹ′ f i = f i − f i−1

h
+ ʹ′ ʹ′ f i

2
h2 + O(h2)



Adams-Moulton Formulas 

•  Closed formulas 

•  Use backward Taylor series expansion 
around ti and backward differences to 
approximate derivatives of f 

€ 

yi = yi+1 − fi+1h +
ʹ′ f i+1

2
h2 +

ʹ′ ʹ′ f i+1

6
h3 + ...

Approximate ʹ′ f i+1  as ʹ′ f i+1 = f i+1 − f i

h
+ ʹ′ ʹ′ f i+1

2
h2 + O(h2)



About the Adams formulas 

•  Choice of truncation point for Taylor Series 
estimate yields formulas of different order 

•  Adams formula of order n incurs truncation 
error of O(hn+1) 

•  Can couple Adams-Bashforth predictor with 
Adams-Moulton corrector 

•  4th-order Adams Method: very popular 



Comments on Multistep Methods 

•  Non-self-starting 

•  Changing step size is complicated 

•  Predictor and corrector yield good local error estimate 

•  Implicit** methods have greater stability than explicit 
methods, but require iterative correction 
**e.g., Adams-Moulton by itself is implicit  

•  If order >2, an implicit method is never 
unconditionally stable 

•  Especially effective for stiff equations 



Review of IVP methods 

•  Euler’s: 1-step, O(h), 1st-
order R.K. 

•  Heun: 1-step, O(h2), 2nd-
order R.K., iterative 
correction step 

•  Second-order Ralston: 
1-step, O(h2), optimal 
2nd-order R.K. 

•  4th-order Runge-Kutta: 
O(h4), very popular 

•  Embedded Runge-Kutta: 
O(h5), allows efficient 
step-size adjustment 

•  Backward Euler: O(h), 
stable, usually requires 
root-finding 

•  Non-self-starting Heun: 
O(h3), multi-step, iterative 
correction 

•  Fourth-order Adams: 
O(h5), multi-step, popular 



Boundary-Value Problems 



IVPs vs BVPs 

•  An nth-order ODE requires n auxiliary conditions 

•  Can transform nth-order ODE into system of n first-
order ODEs 

•  Initial Value Problems 
–  All n conditions specified at same value of dependent 

variable (e.g., t0) 

•  Boundary Value Problems 
–  Conditions known at different values of t (often extreme 

values) 
–  Can’t start with one value of t for which we know the 

solution! 



Example BVP 

•  y’’ = F/m 

•  IVP: y=0 at t=0, y’ = 0 at t=0 

•  BVP: y=0 at t=0, y=10 at t=100 
–  or y = 0 at t = 0, y’=.3 at t=100 



Translating higher-order ODE into system 
of equations 




