Ordinary Ditferential Equations
Part 2

COS 323

[Last time

* Differential equations

* Numerical methods for solving ODE initial
value problems
— Euler’'s method
— Heun’s method
— Runge-Kutta methods
— Adaptive methods (e.g., adaptive R. K.)

Today

* More methods for initial value problems
— Stiff ODEs
— Backward Euler

— Multi-step methods
« Adams methods

- Boundary value problems
— Definition
— Shooting method
— Finite difference method
— Collocation method

Stift ODEs and Implicit Methods

Stift OD)]

T

- May involve transients, rapidly oscillating
components: rates of change much smaller
than interval of study

. from Chapra & Canale

Non-stiff OD)]

(L]

—

global error

Stift OD)]

(L]

= |

See http://www.cse.illinois.edu/iem/ode/stiff/

@ Consider scalar ODE
y' = —100y + 100t + 101
with initial condition y(0) = 1

@ General solution is y(t) = 1 + t + ce~ 1% and particular
solution satisfying initial condition is y(t) =1+t
(i.,e., c=0)

@ Since solution is linear, Euler's method is theoretically
exact for this problem

@ However, to illustrate effect of using finite precision
arithmetic, let us perturb initial value slightly

@ With step size h = 0.1, first few steps for given initial values

dare
t 0.0 0.1 0.2 0.3 0.4

exactsol. 1.00 1.10 1.20 1.30 1.40
Eulersol. 0.99 1.19 0.39 859 —64.2
Eulersol. 1.01 1.01 2.01 —=5.99 67.0

@ Computed solution is incredibly sensitive to initial value, as
each tiny perturbation results in wildly different solution

@ Any point deviating from desired particular solution, even
by only small amount, lies on different solution, for which
¢ # 0, and therefore rapid transient of general solution is
present

See http://www.cse.illinois.edu/iem/ode/stiff/

(L]
w»

Solving Stitt OD

« Adaptive Runge-Kutta?

— Step size for stability may be VERY small, even
when y not changing rapidly

 Implicit methods are often preferred method

Euler’s method

- Known: dy
- t,
4 J(t.y)
y=Yy,att=t,

- What is y, at time t,=t; + h?

A

Vi =Yoo+ f(£,,y,)h

Yo

Yotf(to.Yo)h

>
t1

Backward (Implicit) Euler’s method

- Known: dy
— — t,
4 J(t.y)
y=Yy,att=t,

- What is y, at time t,=t; + h?

Y=Y+ f(t,y)h

* How to solve?
— Fixed-point iteration or Newton-Raphson

Implicit Methods

 Backward Euler

— “Unconditionally stable” ©
» Unstable ODE still problematic

— Can take larger step sizes

« Can be more efficient, even given root-finding at each
step!

— Global error O(h) ®

* Higher-order methods exist

— e.g., second-order implicit trapezoid, implicit R.K.
methods...

Multistep methods

Single step methods

- Use information at a single t, to predict
Yis AL L4
* Includeg Euler, Heun, R.K., efc.

Multistep methods

« Use information we've already learned from
points at t ,, t.,, etc.

A

tiq t tivq

Heun (from last class)

* Predict y, then use slope at y, to correct the
prediction.

* Predictor: Euler’'s method
yz(')+1 =y, + f(t,y)h

» Corrector: Trapezoidal rule

n f(ti’yi) +2f(ti’yz(')+1)]’l

yi+1 =yi

Non-selt-starting Heun

Use information from a previous point to
Improve prediction

Old predictor:

yzp+1 =y, + f(t,y)h
New predictor:

yz(')+1 =y, + f(t,y)2h

Improves accuracy of predictor from O(h?) to
O(h3)

Non-selt-starting Heun

Predictor & Midpoint Rule

Vit Li
[y = [fty)de
Yic L
Yist T Yia T ft.ljf(ta)’)dt
Via 2V, 201 (1,,y;)

Corrector & Trapezoidal Rule

dyldt = f(t,y)

Yisl Livi
J,"dy= " Fayyd
Yian =V = ftim f(t,y)dt

.y, oV,
yi+1_yi+f(zyz)+2f(i+1 yl+1)h

NSS Heun Error

» Use knowledge of error of midpoint and
trapezoidal rules to determine O(h?3) for both
predictor and corrector

« Can relate error of predictor and corrector to
get error estimate for a step:

corrected

qu+1 — Vi
5
« Use error to modify corrector and/or
adaptively adjust step size

E =-

More multi-step methods

* Open formula used as predictor to obtain
Initial estimate, then closed formula used to
correct the predictor

« Can use higher-order predictors and
correctors...

Newton-Cotes formulas

* For open formulas:
Livl
yi+1 = yi—n + ft-_ fn(tay)dt

where f_(t,y) is an n-point interpolating
polynomial (e.g., n=1 yields midpoint rule)

* Closed:
ti+1
yi+1 =yi—n+1+ft. fn(tay)dt

1-n+l1

n=2 yields Trapezoidal rule; n=3 yields
Simpson’s rule; etc.

Adams-Bashforth Formulas

* Open formulas

« Use forward Taylor series expansion around
t. and backward differences to approximate
derivatives of f

V.=V +fl.h+%h2 +%h3 + ...

Approximate f/ as f/ = Ji=Ji +];i h> +0(h%)

h

Adams-Moulton Formulas

* Closed formulas

- Use backward Taylor series expansion
around t, and backward differences to
approximate derivatives of f

fi,+1 fi’-:—l

h* + h” + ...

yi =yi+1_][i+1h+

Approximate f/, asf/ = Ji h_ J, + fgl h* +O(h?)

About the Adams formulas

Choice of truncation point for Taylor Series
estimate yields formulas of different order

Adams formula of order n incurs truncation
error of O(h"*1)

Can couple Adams-Bashforth predictor with
Adams-Moulton corrector

4™-order Adams Method: very popular

Comments on Multistep Methods

Non-self-starting
Changing step size is complicated
Predictor and corrector yield good local error estimate

Implicit** methods have greater stability than explicit
methods, but require iterative correction
**e.g., Adams-Moulton by itself is implicit

If order >2, an implicit method is never
unconditionally stable

Especially effective for stiff equations

Review of IVP methods

Euler’s: 1-step, O(h), 18-+
order R.K.

Heun: 1-step, O(h?), 2nd-
order R.K., iterative .
correction step

Second-order Ralston:
1-step, O(h?), optimal -
2nd_order R.K.

4th-order Runge-Kutta:
O(h?), very popular .

Embedded Runge-Kutta:
O(h»), allows efficient
step-size adjustment

Backward Euler: O(h),
stable, usually requires
root-finding

Non-self-starting Heun:
O(h3), multi-step, iterative
correction

Fourth-order Adams:
O(h>), multi-step, popular

Boundary-Value Problems

IVPs vs BVDPs

An nth-order ODE requires n auxiliary conditions

Can transform nth-order ODE into system of n first-
order ODEs

Initial Value Problems

— All n conditions specified at same value of dependent
variable (e.g., t;)

Boundary Value Problems

— Conditions known at different values of t (often extreme
values)

— Can’t start with one value of t for which we know the
solution!

Example BVP

- y'=F/m
* |[VP:y=0att=0,y =0 att=0

- BVP: y=0 at t=0, y=10 at t=100
—ory=0att=0,y=3att=100

Translating higher-order ODE into system

of equations

For k-th order ODE

B = fty, o, ...,y D)

define £ new unknown functions

ur(t) = y(t), ua(t) = y'(t), ..., up(t) = y* (1)
Then original ODE is equivalent to first-order system
Cup(t) || ug(t)]
uy(1) us(t)
ug,_1(t) ug(t)
up(t) f(t,ug,ug, ... ug) |

Two-point BVP for second-order scalar ODE
u" = f(t,u,u’), a<t<b

with BC
u(a) = a, u(b) = p3

IS equivalent to first-order system of ODEs

-
— : a<t<b
[yé ft,yr,y2) |

