
Monte Carlo Integration  

COS 323 



Last time 

•  Interpolatory Quadrature 
– Review formulation; error analysis 

•  Newton-Cotes Quadrature 
– Midpoint, Trapezoid, Simpson’s Rule 

•  Error analysis for trapezoid, midpoint rules 

•  Richardson Extrapolation / Romberg 
Interpolation 

•  Gaussian Quadrature 

•  Class WILL be held on Tuesday 11/22 



Today 

•  Monte Carlo integration 

•  Random number generation 

•  Cool examples from graphics 



Integration in d  Dimensions? 

•  One option: nested 1-D integration 

 Evaluate the latter numerically, but each “sample” of 
g(y) is itself a 1-D integral, done numerically 



Integration in d  Dimensions? 

•  Midpoint rule in d dimensions? 
–  In 1D: (b-a)/h points 
–  In 2D: (b-a)/h2 points 
–  In general: O(1/hd) points 

•  Exponential growth in # of points for a 
fixed order of method 
–  “Curse of dimensionality” 

•  Other problems, e.g. non-rectangular 
domains 



Rethinking Integration in 1D 



We Can Approximate… 



Or We Can Average 



Estimating the Average 
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“Monte Carlo” Integration 

•  No “exponential explosion” 
in required number of samples 
with increase in dimension 

•  (Some) resistance to 
badly-behaved functions 



Variance 
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Variance 

•  Problem: variance decreases with 1/N 
–  Increasing # samples removes noise slowly 

 E(f(x)) 



Variance Reduction Techniques 

•  Problem: variance decreases with 1/N 
–  Increasing # samples removes noise slowly 

•  Variance reduction: 
– Stratified sampling 
–  Importance sampling 



Stratified Sampling 

•  Estimate subdomains separately 



Stratified Sampling 

•  This is still unbiased 
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Stratified Sampling 

•  Less overall variance if less variance  
in subdomains 
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Total variance minimized when 
number of points in each 
subvolume Mj proportional to 
error in Mj. 



Importance Sampling 

•  Put more samples where f(x) is bigger 
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Importance Sampling 

•  This is still unbiased 

 E(f(x)) 

for all N 



Importance Sampling 

•  Variance depends on 
choice of p(x): 

 E(f(x)) 
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Importance Sampling 

•  Zero variance if p(x) ~ f(x) 

 E(f(x)) 

Less variance with better 
importance sampling 



Random number generation 



True random numbers 

•  http://www.random.org/ 
10101111 00101011 10111000 11110110 10101010 00110001 01100011 00010001  

00000011 00000010 00111111 00010011 00000101 01001100 10000110 11100010  

10010100 10000101 10000011 00000100 00111011 10111000 00110000 11001010  

11011101 11101111 00100010 10101011 00100110 10101111 00001011 10110100  

00011100 00001111 11001001 11001100 01111101 10000100 10111000 01101011  

01101011 01111101 11001010 11101110 11101110 00100010 10110100 01001000  

11010111 11011011 11100100 01010010 10111101 01011010 01001110 01110000  

00100010 11000111 01010000 10110011 01001011 00110001 01011100 10001111  

11111000 10101011 01011011 01010000 01101111 00011001 00000011 00110000  

10000001 00000110 11010011 00011110 11101101 00000011 00100110 01010011  

11010111 10010001 10000111 01010010 01101010 00100101 10011111 01000111  

10101001 01100001 01010011 01001000 11010110 01111110 11010011 01110110  

00000001 01001110 00011001 00111001 



Generating Random Points 

•  Uniform distribution: 
–   Use pseudorandom number generator 
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Pseudorandom Numbers 

•  Deterministic, but have statistical properties 
resembling true random numbers 

•  Common approach: each successive 
pseudorandom number is function of previous 



Desirable properties 

•  Random pattern: Passes statistical tests (e.g., 
can use chi-squared) 

•  Long period: Go as long as possible without 
repeating 

•  Efficiency 

•  Repeatability: Produce same seuqence if 
started with same initial conditions 

•  Portability 



Linear Congruential Methods 

•  Choose constants carefully, e.g. 
a = 1664525 
b = 1013904223 
c = 232 – 1 

•  Results in integer in [0, c) 

•  Not suitable for MC: e.g. exhibit serial 
correlations 



Problem with LCGs 



Fibonacci Generators 

•  Takes form xn = xn-j – xn-k 

•  Standard choices of j, k: e.g., (7, 10), (31, 63), 
(168, 521) 

•  Proper initialization is important and hard 

•  Built-in correlation! 

•  Not totally understood in theory (need 
statistical tests to evaluate) 



Seeds 

•  Why? 

•  http://www.google.com/patents/about/
5732138_Method_for_seeding_a_pseudo_rand.html?id=ou0gAAAAEBAJ 



Pseudorandom Numbers 

•  To get floating-point numbers in [0..1), 
divide integer numbers by c + 1 

•  To get integers in range [u..v], divide by 
(c+1)/(v–u+1), truncate, and add u 
– Better statistics than using modulo (v–u+1) 
– Only works if u and v small compared to c 



Generating Random Points 

•  Uniform distribution: 
–   Use pseudorandom number generator 
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Sampling from a non-uniform distribution 

•  Specific probability distribution: 
– Function inversion 
– Rejection 



Sampling from a non-uniform distribution 

•  “Inversion method” 
–  Integrate f(x): Cumulative Distribution Function 



Sampling from a non-uniform distribution 

•  “Inversion method” 
–  Integrate f(x): Cumulative Distribution Function 
–  Invert CDF, apply to uniform random variable 



Sampling from a non-uniform distribution 

•  Specific probability distribution: 
– Function inversion 
– Rejection 



Sampling from a non-uniform distribution 

•  “Rejection method” 
– Generate random (x,y) pairs, 

y between 0 and max(f(x))  



Sampling from a non-uniform distribution 

•  “Rejection method” 
– Generate random (x,y) pairs, 

y between 0 and max(f(x)) 
– Keep only samples where y < f(x) 

Doesn’t require cdf: Can use directly for importance sampling. 



Quasi-Random Sampling 



Example: Computing pi 



With Stratified Sampling 



Monte Carlo in Computer Graphics 



or, Solving Integral Equations 
for Fun and Profit 



or, Ugly Equations, Pretty Pictures 



Computer Graphics Pipeline 



Rendering Equation 



Rendering Equation 

•  This is an integral equation 

•  Hard to solve! 
– Can’t solve this 

in closed form 
– Simulate complex 

phenomena 



Rendering Equation 

•  This is an integral equation 

•  Hard to solve! 
– Can’t solve this 

in closed form 
– Simulate complex 

phenomena 



Monte Carlo Integration 



Monte Carlo Path Tracing 

Estimate integral  
for each pixel  

by random sampling 



Global Illumination 



Monte Carlo Global Illumination 

•  Rendering = integration 
– Antialiasing 
– Soft shadows 
–  Indirect illumination 
– Caustics 



Monte Carlo Global Illumination 

•  Rendering = integration 
– Antialiasing 
– Soft shadows 
–  Indirect illumination 
– Caustics 
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Monte Carlo Global Illumination 

•  Rendering = integration 
– Antialiasing 
– Soft shadows 
–  Indirect illumination 
– Caustics 

Surface 
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Monte Carlo Global Illumination 

•  Rendering = integration 
– Antialiasing 
– Soft shadows 
–  Indirect illumination 
– Caustics 



Challenge 

•  Rendering integrals are difficult to evaluate 
– Multiple dimensions 
– Discontinuities 

•  Partial occluders 
•  Highlights 
•  Caustics 



Challenge 

•  Rendering integrals are difficult to evaluate 
– Multiple dimensions 
– Discontinuities 

•  Partial occluders 
•  Highlights 
•  Caustics 



Monte Carlo Path Tracing 

Big diffuse light source, 20 minutes 



Monte Carlo Path Tracing 

1000 paths/pixel 



Monte Carlo Path Tracing 

•  Drawback: can be 
noisy unless lots of 
paths simulated 

•  40 paths per pixel: 



Monte Carlo Path Tracing 

•  Drawback: can be 
noisy unless lots of 
paths simulated 

•  1200 paths per pixel: 



Reducing Variance 

•  Observation: some paths more important 
(carry more energy) than others 
– For example, shiny surfaces reflect more light 

in the ideal “mirror” direction 

•  Idea: put more samples where f(x) is bigger 



Importance Sampling 

•  Idea: put more samples where f(x) is bigger 



Effect of Importance Sampling 

•  Less noise at a given number of samples 

•  Equivalently, need to simulate fewer paths for 
some desired limit of noise 



Other examples 

•  http://www.jposhea.org/projects/monte/ 



•  More information on Monte Carlo: 

http://arxiv.org/abs/hep-ph/0006269/ 

•  A review of Monte Carlo Ray Tracing 
Methods: 

http://www.cg.tuwien.ac.at/~balazs/PAPERS/
CESCG97/mcrt.html 



Matlab functions 

•  rand, randi, randn (normal) 

•  rng: Configure your random number 
generator! 

•  Quasi-random: haltonset, sobolset 


